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Spoken language comprehension depends on the capacity to
decode word identities and their meanings from a stream of
rapidly varying acoustic input.
Humans
• For humans, this task seems effortless and automatic.
• There is only limited neurocomputational understanding of
how this is achieved.

• Some evidence that the mapping from speech input onto word
representations is in terms of phonetic (articulatory) fea‐
tures[1,2].

Machines
• Automatic speech recognition (ASR) systems are approaching
human levels of performance with word identification rates in
the 90% range.

• These systems are built strictly on engineering principles, but
provide a computationally specific model of how successful
speech recognition can be achieved.

The questions
• Can we use ASR-derived computational models of speech
recognition to illuminate the human solution?

• Do ASR-derived phonetic feature models significantly explain
patterns of neural activation in speech-related human brain
areas (bilateral superior temporal cortices)?

Research focus
• To answer these questions, we will relate dynamic brain states
in the human listener to dynamic machine states in a
candidate ASR system.

• Simultaneous electro- and magnetoencephalography (EMEG)
provides non-invasive, high-resolution recording of
neurophysiological activity in the brain.

• Representational similarity analysis (RSA) provides the
abstraction necessary to compare brain and machine
responses at the level of the representations they encode.

• We recorded whole-brain EMEG data from sixteen participants
while they listened to a set of 400 British English words. We
used this data to produce dynamic data RDMs.

• The same 400 acoustic tokens were analysed with HTK[5], an
ASR system, to produce dynamic model RDMs.

• We performed ssRSA within a language mask comprising
bilateral superior temporal gyri (STG), superior temporal sulci
(STS) and Heschl’s gyri (HG).

• We computed brain data RDMs using a 60ms sliding window
moving in 10ms increments, and a 15mm patch radius on a
cortical mesh of 10,242 vertices per hemisphere. We
compared the data RDMs to corresponding model RDMs
which were computed using a matching temporal window.

• We offset the dynamic model RDMs from the data at a lag of
100ms to examine the peak of previously found phonetic
discrimination[2,6,7].

• Models derived from machine representations significantly
explained human brain representations in bilateral language areas.

• Results suggest human cortical representations of speech are
represented according to phonetic features, corroborating
previous studies[2].

• Lateral asymmetry may be suggestive of specialisation.
• The pattern information in human brain responses can be
successfully modelled using machine representations, potentially
opening up many new directions of research.

• RSA is a multivariate method which quantifies the shared
similarity structures of data and model representations.

• RSA abstracts away from specific responses, allowing
comparison of representations in very different formats[3].

• Spatiotemporal searchlight RSA[4] for EMEG data uses RSA to
systematically map how a model fits to data throughout the
brain in space and time.

• Time-varying representational dissimilarity matrices (RDMs)
are computed using a sliding window of EMEG data.

• These data RDMs can be tested against corresponding time-
varying model RDMs extracted from the output of an ASR
system.

• Thresholded maps show
spatially-coherent significant
patches of feature sensitivity
in bilateral HG, STG and STS.

• Most features showed
significant fit.

• Broad phonetic category
distinctions fit best in the
right hemisphere. Obstruent
phones are those where
airflow is turbulent, in
contrast with sonorant
phones where airflow is non-
turbulent. Voicing indicates
whether the vocal chords
vibrate.

• Within-category distinctions fit best in left hemisphere. Labial, coronal and dorsal describe place of articulation.
Nasal, stop and approximant describe manner of articulation. The front–back and close–open dimension
describe articulation of vowels, and rounding indicates the shape of the lips for vowels.
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• ASR systems standardly map from representations of speech (e.g.
mel-frequency cepstral coefficients; MFCCs) to abstract phonetic
labels.

• A successful example is HTK, which uses a Gaussian mixture model
to map successive sliding windows of speech onto estimated
triphone likelihoods.

• We use these triphone likelihoods to generate model RDMs for each
phone incrementally as each word is heard.

• Entries in the dynamic model RDM for a particular phone were
computed by correlating the vector of triphone likelihoods for that
phone between each pair of words in a 60ms sliding window,
moving in 10ms increments through time.

• Model RDMs are tested against corresponding data RDMs.

• Previous studies sug‐
gest that early represen
tations of speech are
organised according to
phonetic features[1],
and that these are
represented in the
brain in bilateral super‐
ior temporal regions[2].

• We use a generalised
linear model to
determine the contri‐
butions of each
phonetic model RDM
to explaining the data
RDM[8].

• Contributions of pho‐
netic models exhibiting
each feature are
summed to produce
the contributions of
that feature.

• This contribution is
mapped back to the
searchlight location.

• Resulting maps are
thresholded using a
permutation statistic[8].


