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Conclusions
•We related different layers of a DNN-based computational model of speech recognition to EMEG data recorded
from humans listening to speech.
•Several hidden-layer models fit the brain data better than the input and output layer models.
•Earlier hidden-layer models L2 and L3 (closer to acoustic representation) fit brain data well.
•Higher hidden layers (L4 and L5) failed to fit brain data at the same level, perhaps indicating a divergence of
human and machine representations.
•However at L6 and the compressed code of L7, where activations seem to cluster by articulatory features, the
hidden-layer models again correlated with brain representations.
•Posterior–anterior STC showed changes in model fit over lags and layers, which may reflect progressively
more specific representations of speech, with anterior STC representations relating to phonetic rather than
acoustic features.
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Differential fits of DNN layers in left STC
• Input layer FBK peaked early (0–70ms) in left posterior STC.
•Layers L2–L4 and L6–L7 peaked later, achieving a maximum
at ~170ms.
•Layers L5 and TRI showed no significant fit in the left
hemisphere at this threshold.

•Overall, fit improved
between layers FBK–L3,
diminished for L4–L5, and
re-emerged for L6–L7 (see
bar graph).
•Right STC showed an early
peak (~0–120ms) which did
not distinguish between
layers.

•Brain renderings show left-hemisphere supra-threshold
vertices of TFCE t-maps (p < 0.01).
•Line graph shows the time-course of each layer as it
attains its maximum cluster size in left STC.
•Bar graph shows peak left-hemisphere cluster size over the
epoch.

Results
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•This gave time-resolved maps of the fit of each model to the
brain data in individual subjects at each lag, which we
converted to t-maps across subjects.
•Threshold-free cluster enhancement (TFCE) was performed
on the resultant t-maps8.

•Random-effects permutation across subjects was used to
determine the significance of the TFCE values.
•Resultant maps were thresholded at p < 0.001.

Computational mapping
•Model RDMs were produced from activations in each layer of the DNN as HTK listened to the same
recorded words as the participants.
•We fitted the model RDM time course to the data RDM time course systematically at different processing
lags (0–250ms).

Visualising hidden-layer representations
•Average L7 response to different phones can be visualised
by Sammon nonlinear multidimensional scaling.
•Bottleneck responses clustered according to place and
manner of articulation of consonants, position of vowels, and
broad category distinctions (e.g. sonorant–obstruent).ɑː
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Deep neural network speech recogniser
•To model the speech recognition process, we used
HTK3, an ASR system.
•HTK uses a fully-connected, feed-forward DNN as an
acoustic model, mapping speech sounds to phonetic
targets through time.
•DNN trained on ~700 hours of subtitled TV audio.
• Input is speech audio with a mel-frequency filterbank
applied (FBK).
•Between input (FBK) and output (TRI) layers, information passes through five high-dimensional (1000-node)
hidden layers (L2–L6) and a low-dimensional (26-node) "bottleneck" layer (L7).
•Output layer gives posteriors for ~6000 phonetic targets to a set of hidden Markov models (HMMs) associated
with phonemes used in the ASR acoustic model.

Computational modelling and analysis
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•Representational similarity analysis (RSA6)
compares condition space representations using a
representational distance matrix (RDM) with
pairwise condition distances as entries.
•Data RDMs are computed from brain responses;
model RDMs from model representations or
predicted distances.

•RSA abstracts away from specific responses,
allowing comparison of representations in very
different formats4,6.
•Spatiotemporal searchlight RSA (ssRSA7)
computes data RDMs from a continuously moving
regular spatiotemporal searchlight patch.

ssRSA

•Whole-brain simultaneous electro- and magneto-
encephalography (EMEG) data was recorded from
16 participants while they listened to recordings of
400 British English words.
•EMEG data was source-localised and warped to a
subject-average cortical mesh.
•The mesh was restricted to an auditory cortex (AC)
mask comprising bilateral superior temporal
cortices (STC) and Heschl's gyrus (HG).
•The mask matches locations previously found to
exhibit phonetic feature sensitivity to speech1,2.

EMEG experiment

Introduction
Human speech recognition
•For humans, speech recognition feels effortless
and automatic.
•There is only limited neurocomputational
understanding of how this is achieved.
•Recent evidence suggests that responses to
speech may be represented in a low-dimensional
space of articulatory features1,2.
Machine speech recognition
•Automatic speech recognition (ASR) systems using
deep neural network (DNN) acoustic models
approach human levels of performance, with word
identification rates well over 90%3.
•They provide a computationally specific model of
how successful speech recognition can be
achieved.
•DNNs have been successful models for brain
responses in other domains, e.g. vision4.

•Here we use a DNN-based ASR system to model
brain responses to speech using multivariate
searchlight techniques5.

•Can we model human neural responses to speech
with an ASR-derived DNN acoustic model?
•Can we characterise hidden-layer representations?
•Do activations in different layers of such a DNN
differentially explain cortical speech responses
through space and time?

The questions we ask
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