

# A graphical foundation for schedules 

Guy McCusker — John Power - Cai Wingfield

## Talk overview

* Schedules from Harmer et al.
* Joyal and Street's framework
* Graphical definition
* Category of schedules


## Schedules

Harmer, Hyland and Melliès, 2007 Categorical combinatorics for innocent strategies

* Paper constructs categories of games
* Describes some game semantic concepts via a distributive law
* Introduced notion of a $-\infty$-scheduling function.
* Describes interleaving of plays in a game $A \multimap B$.


## Schedules

Harmer, Hyland and Melliès, 2007 Categorical combinatorics for innocent strategies

* A $\rightarrow$-scheduling function is a function

$$
e:\{1, \ldots, n\} \rightarrow\{0,1\}
$$

such that:

$$
\begin{aligned}
& e(1)=1 \\
& e(2 k+1)=e(2 k)
\end{aligned}
$$

* I.e., binary strings
* e.g. 1001111001
* e.g. 1111100001
* e.g. Prefixes


## Schedules

Harmer, Hyland and Melliès, 2007 Categorical combinatorics for innocent strategies

* Schedules are pairs of embeddings

$$
\begin{aligned}
& e_{L}:\left\{1, \ldots,|e|_{0}\right\} \hookrightarrow\left\{1, \ldots,|e|_{0}+|e|_{1}\right\} \\
& e_{R}:\left\{1, \ldots,|e|_{1}\right\} \hookrightarrow\left\{1, \ldots,|e|_{0}+|e|_{1}\right\}
\end{aligned}
$$

* Schedules are order relations

$$
\left.\begin{array}{l}
e_{L}(x)<e_{R}(y) \\
e_{R}(y)<e_{L}(x) \\
\subset
\end{array}\left\{1, \ldots,|e|_{0}\right\}^{\text {even }} \times\left\{1, \ldots,|e|_{1}\right\}^{\text {even }},|e|_{1}\right\}^{\text {odd }} \times\left\{1, \ldots,|e|_{0}\right\}^{\text {odd }}
$$

* Compose schedules by:
* Composing corresponding order relations
* Reconstructing function from composite


## Schedules

Harmer, Hyland and Melliès, 2007 Categorical combinatorics for innocent strategies

* Composition is associative
* Hard to prove!
* Copycat identities: prefixes of 10011001100 11...
* Positive natural numbers and schedules form a category, $\Upsilon$
* Composition and identities are key


## Schedules: what people do

* Composing schedules via original definition is hard
* Use a graphical aid: schedule diagrams



## Schedules: what people do

* Composition is a graphical exercise
* Write schedules next to each other with nodes identified
* Trace path "with momentum"


## Schedules: what people do



## Schedules: what people do

* Can we capture this and make it formal?
* Composition is easier...
* ...can it help with schedules' other tricky properties?
* Set schedule diagrams in a general framework for diagrams
* Joyal and Street's progressive plane graphs for monoidal category string diagrams
* Resembles what people draw
* Operations on schedules are operations on PPGs
* Compactness keeps things finite

Joyal and Street, 1991
The geometry of tensor calculus I

* A progressive plane graph is a progressive graph which is embedded in the plane

* Hausdorff * Nodes
* Edges are * Separates directed
* No cycles
graph into edges
$* \longleftrightarrow$ projection injective on each edge
* Respects edge direction
* A progressive plane graph is a progressive graph which is embedded in the plane



## String diagrams

Joyal and Street, 1991
The geometry of tensor calculus I

* Example of how this is used elsewhere:
* String diagrams for monoidal categories
* PPGs have natural structure of free monoidal categories
* Can be used to prove properties of monoidal structures


II
$(a \otimes b \otimes C) \circ(B \otimes c \otimes D \otimes C) \circ(B \otimes C \otimes d)$

## Schedules

* A schedule:
$U=\left\{u_{1}, \ldots, u_{m}\right\}$
$\underbrace{\bullet v=\left\{v_{1}, \ldots, v_{n}\right\}}$
$S_{m, n}=\underset{\Sigma=(S, U+V)}{(U, V, \Sigma, \iota)}$
$\ldots$


$$
\Sigma=(S, P)
$$

## Schedules

* A schedule:

$$
S_{m, n}=(U, V, \Sigma, \iota)
$$



* Nodes into boundary of strip
* Downwards ordering of nodes
* Edges within interior of strip

$$
[u, v] \times \mathbb{R}
$$

## Schedules

* Examples:



## Deforming schedules

*When are two schedules "the same"?

* Consider equality of schedules to be up to deformation, such as:
* Translation
* "Piecewise" scaling
* "Yanking" of zig-zags



## Composition of schedules

* Capturing idea of "momentum"
* Two ways to think about it
* (Definition) Algorithmically/inductively
* Start top-right
* Swap through internal nodes
* Remove unpicked edges, internal nodes

* (Lemma) Unique (up to deformation) path through all nodes


## Composition of schedules

* Is this well-defined?
* (Proposition) Following this procedure produces a graph satisfying schedule conditions.
*Removing internal nodes concatenates sequences of nodes on one side or the other
* This preserves odd/evenness


## Composition of schedules

* Why can't we have these problematic scenarios?
* Colour nodes $\circ / \bullet($ like O/P)
* First right-hand node: ○
* Nodes alternate $\circ / \bullet$ along path
* Nodes alternate $\circ / \bullet$ down each side



## Composition of schedules

* Local encoding of global properties
* Internal nodes are twocoloured: $\boldsymbol{\oplus}$ or $\boldsymbol{\oplus}$
* Cross-schedule edges are $\circ \rightarrow \bullet$
* Problematic scenario is impossible
*When composing, remove or 0



## Composition of schedules

* (Proposition) Associativity is easy!
* Write down three schedules
* Composite is unique path through each node
* Associating left/right is just discarding left / right set of unused edges and nodes first
* "Juxtaposition is associative"



## Category of schedules

* (Lemma) Copycat schedules are identities
* (Theorem) Positive naturals and graphical schedules form a category, Sched.



## Equivalence of categories

* (Theorem) Sched and $\Upsilon$ are equivalent as categories
* Functor $C$ : Sched $\longrightarrow \Upsilon$ is:
* Identity on objects
* Schedule $\longmapsto$ binary string recording left-right position
* Composition is preserved
* "Glueing cross-schedule edges is composing order relations on odd and even subsets"


## Equivalence of categories

* Functor $G: \Upsilon \longrightarrow$ Sched is:
* Identity on objects
* Binary string $\longmapsto$ some canonical schedule construction
* E.g. nodes at integer heights, edges are straight lines and circular arcs


## Equivalence of categories

- $C G=\mathrm{id}$
* $G C \cong \mathrm{id}$
* Schedules determined up to deformation by left-right position of nodes
* Arrange nodes in order with unit vertical distances
* Compact, simply-connected rectangles with nodes in corners
* Endpoint-preserving homotopies relate any edges within a rectangle


## Results

* Definitions relate directly to pictures and practice amongst researchers
* Demonstration of key properties rendered far simpler through careful definitions
* Relation to other work:
* Schedules can also be characterised using the free adjunction $\mathcal{A} d j$
* Cf. Melliès' 2-categorical string diagrams for adjunctions (in preparation)


## Future work

* Other constructions from Harmer et al.
* $\otimes$-scheduling functions.
* Strategies
* Pointer functions and heaps


## Future work

* Definition of associative composition for more relaxed notions of scheduling
* Our schedules are typed by numbers
* Alternative notions of type may support broader classes of schedule


## Future work

* Joyal and Street's framework can be expanded for other classes of diagram
* Hopefully our use of it will:
* Provide common ground for future work
* Contribute new categories of games and strategies

