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(III) To compose, deform both schedules so that the
two images of the internal nodes are identified, form-
ing a composition diagram.
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(IV) The composite schedule is achieved by trac-
ing along edges, starting from the first node on
the right, swapping sides whenever an internal
node is reached.

Fig. 1. Example schedules and composition.

e is essentially a binary string of length n, where the domain of e indexes
the string left-to-right and where 1s and 0s come in pairs after the first 1

(see Section 2). For examples, 1001111001 and 1001100001 are schedules
{1, . . . , 10} → {0, 1}.

Researchers typically describe schedules on the page or blackboard using
a graphical representation [5,7,11,12]. For examples, Figures 1(I) and 1(II)
are graphical representations of the above two schedules. Composites are
also typically described graphically, in a manner implied by the description of
schedules as pairs of order relations in [9]. Figures 1(III) and 1(IV) describe
the composite of the two examples of schedules above. While many people
draw precisely such diagrams as these, there is another common practice which
is to omit the lines — i.e. a picture of a play in A! B will be drawn below
a heading “A ! B” and have moves in A written below the “A”, moves
in B written below the “B”, the sequential interleaving given by vertical
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Talk overview

✤ Schedules from Harmer et al.

✤ Joyal and Street’s framework

✤ Graphical definition

✤ Category of schedules
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Schedules

✤ Paper constructs categories of games

✤ Describes some game semantic concepts via a distributive law

✤ Introduced notion of a ⊸-scheduling function.

✤ Describes interleaving of plays in a game A ⊸ B.

Harmer, Hyland and Melliès, 2007
Categorical combinatorics for innocent strategies
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✤ A ⊸-scheduling function is a function

such that:

✤ I.e., binary strings

✤ e.g. 1 00 11 11 00 1

✤ e.g. 1 11 11 00 00 1

✤ e.g. Prefixes

Schedules Harmer, Hyland and Melliès, 2007
Categorical combinatorics for innocent strategies

e : {1, . . . , n} ! {0, 1}

e(1) = 1

e(2k + 1) = e(2k)

4



Schedules

✤ Schedules are pairs of embeddings

✤ Schedules are order relations

✤ Compose schedules by:

✤ Composing corresponding order relations

✤ Reconstructing function from composite

Harmer, Hyland and Melliès, 2007
Categorical combinatorics for innocent strategies

eL(x) < eR(y) ⇢ {1, . . . , |e|0}even ⇥ {1, . . . , |e|1}even

eR(y) < eL(x) ⇢ {1, . . . , |e|
1

}odd ⇥ {1, . . . , |e|
0

}odd

eL : {1, . . . , |e|0} ,! {1, . . . , |e|0 + |e|1}
eR : {1, . . . , |e|1} ,! {1, . . . , |e|0 + |e|1}
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Schedules

✤ Composition is associative

✤ Hard to prove!

✤ Copycat identities: prefixes of 1 00 11 00 11 00 11...

✤ Positive natural numbers and schedules form a category, Υ

✤ Composition and identities are key

Harmer, Hyland and Melliès, 2007
Categorical combinatorics for innocent strategies
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Schedules: what people do

✤ Composing schedules via 
original definition is hard

✤ Use a graphical aid: schedule 
diagrams

McCusker, Power and Wingfield
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Schedules: what people do

✤ Composition is a graphical exercise

✤ Write schedules next to each other with nodes identified

✤ Trace path “with momentum”
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Schedules: what people do

✤ Can we capture this and make it formal?

✤ Composition is easier...

✤ ...can it help with schedules’ other tricky properties?
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PPGs

✤ Set schedule diagrams in a general framework for diagrams

✤ Joyal and Street’s progressive plane graphs for monoidal category string 
diagrams

✤ Resembles what people draw

✤ Operations on schedules are operations on PPGs

✤ Compactness keeps things finite

Joyal and Street, 1991
The geometry of tensor calculus I
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PPGs

✤ A progressive plane graph is a progressive graph which is embedded in 
the plane

Joyal and Street, 1991
The geometry of tensor calculus I

� = (G,G0) ◆ : �̂ ,! R2

✤ Hausdorff

✤ Edges are 
directed

✤ No cycles

✤ Nodes

✤ Separates 
graph into 
edges

✤ Endpoint compactification

✤ Continuous injection

✤ ⟷ projection injective on 
each edge

✤ Respects edge direction
12



PPGs

✤ A progressive plane graph is a progressive graph which is embedded in 
the plane

Joyal and Street, 1991
The geometry of tensor calculus I

� = (G,G0) ◆ : �̂ ,! R2

◆

R2
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String diagrams

✤ Example of how this is used 
elsewhere:

✤ String diagrams for 
monoidal categories

✤ PPGs have natural structure 
of free monoidal categories

✤ Can be used to prove 
properties of monoidal 
structures

Joyal and Street, 1991
The geometry of tensor calculus I

be “piecewise linear” or by using “the obvious definitions”, though both of these leave something
to be desired. The first, as this is not what people actually draw when they draw diagrams,
and so potentially the definition is not capturing the subtleties of the methods mathematicians
actually use. The second, as the definitions themselves are frequently not obvious (for two
examples, [Gol74] shows a set of examples demonstrating that two possible characterisations of
braid deformation are not equivalent, and that this fact was not known to Artin and the proofs,
like [Hal07], of the deceptively evident Jordan curve theorem are from obvious).

The approaches I intend to take will, as far as possible, reflect the realities of the diagrams that
mathematicians actually draw, and will be as precise, avoiding appeals to “obvious” yet unstated
facts. The power of the methods I will describe here come from facts about plane geometry. The
aspect of graphs in the plane that the trickiest parts of my proof will rely on is their compactness.
When graphs are compact subsets of the plane, we ensure that we can always finitely decompose
them into pieces in such a way as to avoid many of the potential pathological cases we might
otherwise have to worry about. In particular, the proof of proposition 14 (in the technical report
on monoidal categories) uses the finiteness provided by compactness more than once.

The facts I will use about compactness are elementary and can be found in any decent under-
graduate textbook on topology, such as [Arm83], but are restated in appendix A.1 for reference.

2.3 Graphical notation for monoidal categories

A knowledge of the definition and a few properties of monoidal categories is required for this,
and an explanation of the basics, with references, can be found in appendix A.2.

The graphical notation I have examined is that of string diagrams in monoidal categories. It is
well-establised in its use (see, for example, tutorial at [CW07b]) but the geometric formulation
I will describe here is from Joyal and Street’s sequence of papers, including [JS88, JS91, JS93],
but especially [JS91].

Before I begin with the definitions, I will give an example of a string diagram denoting a com-
plicated expression in a monoidal category, adapted from [JS91] to give a flavour of the kind of
diagram we will eventually be considering:

B C D

•

a

•

c

•

b

•

d

A B C

B

C

D

Figure 1: An example string diagram, from [JS91]

The particular example in figure 1 denotes the composition

(B⌦C ⌦ d) � (B⌦ c⌦D⌦C) � (a⌦ b⌦C)

4
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(a⌦ b⌦ C) � (B ⌦ c⌦D ⌦ C) � (B ⌦ C ⌦ d)

=



Schedules

✤ A schedule:

Sm,n = (U, V,⌃, ◆)

U = {u1, . . . , um}

V = {v1, . . . , vn}

⌃ = (S,U + V )

⌃ = (S, P )

p1 = v1

{p2k, p2k+1} ⇢ U

{p2k, p2k+1} ⇢ V

...

or

15



Schedules

✤ A schedule:

Sm,n = (U, V,⌃, ◆)

u1 u2

v1

v2

⌃

[u, v]⇥ R

v1

v2

u1

u2

✤ Nodes into boundary of strip

✤ Downwards ordering of nodes

✤ Edges within interior of strip

◆U ◆V

◆
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Schedules

✤ Examples:
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Deforming schedules

✤ When are two schedules “the 
same”?

✤ Consider equality of schedules 
to be up to deformation, such as:

✤ Translation

✤ “Piecewise” scaling

✤ “Yanking” of zig-zags

McCusker, Power and Wingfield

•

•
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•
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(I) t = 0.

•

•
•

•
•

•
•

•

(II) t = 1/2.

•
•
•

•
•

•
•

•

(III) t = 1.

Fig. 3. A “time-lapse” view of a deformation of the schedule in Figure 1(II). Arrowheads used to
indicate directions have been omitted for clarity.

Then we may also say that the schedule Sm,n is a deformation of the
schedule S ′

m,n. We call h the deformation and write “Sm,n ∼ S ′

m,n”.
Since the deformation implies that the sets of nodes and edges in each

schedule are in bijection, we may automatically associate them to give a notion
of node and edge for a deformation class.

For example, looking again at the schedule in Figure 1(IV), we may deform
this by smoothly manipulating it in the plane, ensuring that the vertical order
of nodes is not disturbed, and such that at each point in time it remains a
schedule. Figure 3 shows an example of this. One might use a deformation
specifically like this in the “cleaning up” of composite schedules before reuse.

Since a plane graph Γ with its plane embedding ι is trivially deformable
into the graph-in-the-plane ι(Γ) with the identity embedding, we often iden-
tify a graph with a chosen (or arbitrary) embedding where the distinction is
unnecessary. Similarly, we will often take a deformation class representative
to be a graph chosen as a subset of the plane with the identity embedding.

Example 3.6 For any schedule, the following are examples of deformations
which we will use a number of times in this paper:

• A translation of that schedule in the plane.

• A horizontal or vertical scaling in the plane.

• A “piecewise” vertical scaling, achieved by dividing the plane by a finite
number of horizontal lines and then applying a different scaling factor
to each, as illustrated in Figure 4. This will allow us to place the nodes

7

18



Composition of schedules

✤ Capturing idea of “momentum”

✤ Two ways to think about it

✤ (Definition) Algorithmically/inductively

✤ Start top–right

✤ Swap through internal nodes

✤ Remove unpicked edges, internal nodes

✤ (Lemma) Unique (up to deformation) path through all nodes
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Composition of schedules

✤ Is this well-defined?

✤ (Proposition) Following this procedure produces a graph satisfying 
schedule conditions.

✤ Removing internal nodes concatenates sequences of nodes on one 
side or the other

✤ This preserves odd/evenness

20



Composition of schedules

✤ Why can’t we have these 
problematic scenarios?

✤ Colour nodes ○/● (like O/P)

✤ First right-hand node: ○

✤ Nodes alternate ○/● along 
path

✤ Nodes alternate ○/● down 
each side

McCusker, Power and Wingfield

◦
•
◦

•
◦

•
◦
•
◦

•
(I)

•

•
•

•

...

...
(II)

•
•

•

•

...

...
(III)

!"

#"

◦
•

×

...

...
(IV)

◦
•

!"

#"

×

...

...
(V)

◦
!"

•
◦

#"

•
◦

!"

#"

!"

•
◦

#"

•
(VI)

Fig. 7. Colouring of nodes.

both of them could be ◦ → •, since the internal node is different colours
in both component schedules; hence such a scenario is impossible. Similarly
for two cross-schedule edges to the same internal node. Figures 7(IV) and
7(V) show the hypothetical fragments with a choice of colours, and the illegal
edges marked with a ×. An analogous arguments using state diagrams exist
elsewhere in the game semantics literature; for example, [1,7].

5 The category Sched

We now come to the key result, that of the associativity of composition. This,
along with a definition of identities, will yield a description of the category of
schedules.

Proposition 5.1 Composition of schedules is associative.

Proof. It suffices to show that both possible three-fold compositions are equal.
Suppose we are composing schedules

U
Sl,m
−−→ V

S′

m,n
−−−→ W

S′′

n,r
−−→ X

(which we will refer to as S, S ′ and S ′′ for readability). We wish to show that
(S‖S ′)‖S ′′ is deformable into S‖(S ′‖S ′′). Without loss of generality, we may
position S, S ′ and S ′′ so that the two copies of V are identified and the two
copies of W are identified. This is the 3-fold composition diagram, an
example of which can be seen in Figure 8. By Lemma 4.2, both composites
(S‖S ′)‖S ′′ and S‖(S ′‖S ′′) are given by the unique path (up to deformation)
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Composition of schedules

✤ Local encoding of global 
properties

✤ Internal nodes are two-
coloured: ◑ or ◐

✤ Cross-schedule edges are ○→●

✤ Problematic scenario is 
impossible

✤ When composing, remove ◑ or 
◐
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Composition of schedules

✤ (Proposition) Associativity is 
easy!

✤ Write down three schedules

✤ Composite is unique path 
through each node

✤ Associating left/right is just 
discarding left/right set of 
unused edges and nodes first

✤ “Juxtaposition is associative”
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Fig. 8. A three-way composition diagram with composite path highlighted. Note that, since we
must always cross between schedules on reaching an internal node, there are no choices to be made.

in the 3-fold composition diagram which passes through each node U + V +
W +X . Thus the difference in bracketing between (S‖S ′)‖S ′′ and S‖(S ′‖S ′′)
corresponds to whether we remove unselected edges and inner nodes from V or
from W first; both choices must yield the same path. In essence, associativity
is due to the natural associativity of juxtaposition in the plane. !

We now proceed to examine the category of schedules. The objects of
this category are natural numbers m ∈ N+, realised as finite indexed sets
U = {u1, . . . , um}. A morphism m → n is a deformation-class of schedules
Sm,n : U → V .

Definition 5.2 Copycat schedules are the “most alternating” schedules pos-
sible subject to the schedule axioms. For n ∈ N+, the schedule In,n may be
given by its path description on vertex set P2n = U ′

n + Un.

p4k+1 = u2k+1, p4k+2 = u′

2k+1, p4k+3 = u′

2k+2, p4k+4 = u2k+2
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Category of schedules

✤ (Lemma) Copycat schedules are 
identities

✤ (Theorem) Positive naturals and 
graphical schedules form a 
category, Sched.

McCusker, Power and Wingfield

Graphically, this can be seen in Figure 9. Alternatively, these copycat
schedules may be characterised by saying that also {p2k+1, p2k+2} !⊂ Un and
!⊂ U ′

n.

•u1 = p1
•p2 = u′

1

•p3 = u′

2

•u2 = p4
•u3 = p5

•p6 = u′

3

•p7 = u′

4

•u4 = p8...

Fig. 9. A prefix fragment of an identity schedule.

The following lemma is proved in Appendix A as Lemma A.1.

Lemma 5.3 Copycat schedules In,n are the identities of schedule composition.

Theorem 5.4 Positive natural numbers, together with the graphical schedules
form a category, called Sched , where composition is defined by Definition 4.1
and identities are copycat schedules.

We will demonstrate that Sched is equivalent to Υ by exhibiting a functor
Sched → Υ giving the equivalence. Let Sm,n : U → V be a schedule in
[u, v]× R; that is, an arrow of Sched . We construct a functor C which acts
on objects as the identity and which assigns to Sm,n a !-schedule function
e : [m+ n] → {0, 1} with

e : i %→

{

0 if pi ∈ Lu

1 if pi ∈ Lv

In the combinatorial terms of Harmer et al. [9], a schedule e : m → n
corresponds to injections eL : [m] ↪→ [m + n] and eR : [n] ↪→ [m + n], which
in turn correspond to order relations eL(x) < eR(y) from [m]+ to [n]+ and
eR(y) < eL(x) from [n]− to [m]−. Thinking in terms of diagrams, the deco-
rations + and − correspond to the parity down each edge. Then the order
relation eR(y) < eL(x) is depicted by edges right-to-left in the diagram and
the order relation from eL(x) < eR(y) is depicted by edges left-to-right. The
parity is indicated by the colours on nodes (though they are reversed on the
left side). Composition of the order relation from two schedules is exactly
what is performed during the composition on diagrams. Hence, we have the
following proposition:

Proposition 5.5 C is a functor Sched → Υ.
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A Appendix: Identity schedules

In,n may be explicitly defined, for example as In,n = (U ′

n, Un,Σn,n, id : Σ →
[0, 1]× R) where:

• U ′

n = {u′

i | i odd =⇒ u′

i = (0,−2i), i even =⇒ u′

i = (0, 1− 2i)}

• Un = {ui | i odd =⇒ ui = (1,−2i), i even =⇒ ui = (1, 1− 2i)}

• Σ = (Σ, U ′

n + Un) where

Σ =
⋃

{line segments [u2k−1, u
′

2k−1]} ∪
⋃

{line segments [u′

2k, u2k]} ∪ · · ·
⋃

{circular arc, endpoints {u′

2k−1, u
′

2k}, angle α < π} ∪ · · ·
⋃

{circular arc, endpoints {u2k, u2k+1}, angle α < π}

Of course, we consider any deformation of this to be an identity schedule.

•u2k+1

•u2k+2

(I) An edge of the
schedule Sm,n.

•u2k+1

•u2k+2

•u′

2k+1

•u′

2k+2

(II) A fragment of the identity
schedule.

•u2k+1

•u2k+2

!

•u′

2k+1

•u′

2k+2

.................................

⇐=

(III) A fragment of the deformation demonstrat-
ing that copycat schedules are identities of sched-
ule composition.

Fig. A.1.

Lemma A.1 Left and right composition with In,n satisfies identity axioms.

Proof. First, for composition on the left, let Sm,n : U → V be a schedule
and let Im,m : U ′ → U be the identity schedule. We want to show that
Im,m‖Sm,n

∼= Sm,n.
Since Sm,n is a schedule, we have that u2k+1 and u2k+2 are joined by an

edge, as in Figure A.1(I). Since Im,m is a copycat, we know that u2k+1 and
u2k+2 are joined in Im,mby the identity schedule fragment in Figure A.1(II).

We know that in Im,m‖Sm,n, the edge into u2k+1 to be chosen will be the
one from Sm,n, and the edge out of u2k+1 will be the one from Im,m, after which
u2k+1 will be “declassified” as a node. Similarly, the edge into u2k+2 to be cho-
sen will be the one from Im,m and the edge out will be the one from Sm,n before
u2k+2 is declassified. Then the equality of the schedule fragment surrounding
u2k+1 and u2k+1 (which will become the schedule fragment surrounding u′

2k+1

and u′

2k+1 in the composite) holds up to the evident deformation in Figure
A.1(III).
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Equivalence of categories

✤ (Theorem) Sched and Υ are equivalent as categories

✤ Functor C : Sched ⟶ Υ is:

✤ Identity on objects

✤ Schedule ⟼ binary string recording left–right position

✤ Composition is preserved

✤ “Glueing cross-schedule edges is composing order relations 
on odd and even subsets”
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Equivalence of categories

✤ Functor G : Υ ⟶ Sched is:

✤ Identity on objects

✤ Binary string ⟼ some canonical schedule construction

✤ E.g. nodes at integer heights, edges are straight lines and 
circular arcs
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Equivalence of categories

✤ CG = id

✤ GC ≅ id

✤ Schedules determined up to deformation by left–right position 
of nodes

✤ Arrange nodes in order with unit vertical distances

✤ Compact, simply-connected rectangles with nodes in corners

✤ Endpoint-preserving homotopies relate any edges within a 
rectangle
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Results

✤ Definitions relate directly to pictures and practice amongst 
researchers

✤ Demonstration of key properties rendered far simpler through careful 
definitions

✤ Relation to other work:

✤ Schedules can also be characterised using the free adjunction Adj

✤ Cf. Melliès’ 2-categorical string diagrams for adjunctions (in 
preparation)
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Future work

✤ Other constructions from Harmer et al.

✤ ⊗-scheduling functions.

✤ Strategies

✤ Pointer functions and heaps
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Future work

✤ Definition of associative composition for more relaxed notions of 
scheduling

✤ Our schedules are typed by numbers

✤ Alternative notions of type may support broader classes of 
schedule
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Future work

✤ Joyal and Street’s framework can be expanded for other classes of 
diagram

✤ Hopefully our use of it will:

✤ Provide common ground for future work

✤ Contribute new categories of games and strategies
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