GRAPHICAL NOTATION SCHEMES

Cai Wingfield
go.bath.ac.uk/cai - c.a.j.wingfield@bath.ac.uk
Young Researchers in Mathematics, Bristol
4 April 2012

WHAT'S THE ISSUE?

- Symbolic expressions used in foundational mathematics
- Powerful methods
- Objects of study in themselves
- Can be technical and syntax-heavy
- Can be easy to make mistakes by hand and hard to spot structure

WHAT'S THE ISSUE?

- Researchers have always found ways round this:
- Doodles in margins to help symbolic calculations
- Proofs-by-picture

WHAT'S THE ISSUE?

- Pictures can capture important aspects of abstract structure
- It's not a coincidence that they're so useful
- Many classes of graphs exhibit rich categorical structure
- That's why they're usefu!!

STRING DIAGRAMS

- Just one type of example: monoidal categories with other structure
- Nice examples to demonstrate the ideas

MONOIDAL CATEGORIES

- A monoidal category is a category with
- a bifunctorial tensor product, \otimes
- A specified "tensor unit", I
- Associativity and identity natural isomorphisms, a, l, r, or strictness
- Coherence axioms

MONOIDAL CATEGORIES

- Examples
- (Set, $\times,\{*\})$ non-strict
- (\mathcal{C}, \times, t) category with binary products and terminal object
- Rel category of sets and relations
- $\left([\mathcal{C}, \mathcal{C}], \circ, \operatorname{id}_{\mathcal{C}}\right)$ strict

MONOIDAL EXPRESSIONS

Expressions in categories
$A \quad B \quad C$

$$
\begin{array}{r}
f: A \rightarrow B \quad g: B \rightarrow C \quad g \circ f: A \rightarrow C \\
\text { " } C \text { " }=\operatorname{id}_{C}: C \rightarrow C
\end{array}
$$

Expressions in monoidal categories

$$
\begin{gathered}
A \otimes B \quad C \otimes D \otimes E \otimes F \\
f \otimes g: A \otimes C \rightarrow B \otimes C \quad f \otimes C: A \otimes C \rightarrow B \otimes C \\
h: A \otimes B \rightarrow C \otimes D \otimes E \otimes F \\
f: X \rightarrow X_{1} \otimes \cdots \otimes X_{n} \\
g: X_{1} \otimes \cdots \otimes X_{n} \rightarrow Y \\
g \circ f: X \rightarrow Y \\
8
\end{gathered}
$$

MONOIDAL EXPRESSIONS

- When are these equal due

$$
\begin{aligned}
& f: A \rightarrow E \otimes D \\
& h: D \rightarrow G \otimes H \\
& g: D \otimes B \otimes C \rightarrow F
\end{aligned}
$$ to monoidal axioms?

- When are these equal in any monoidal category?

$$
(E \otimes g \otimes h) \circ(f \otimes B \otimes C \otimes D)
$$

- (Again, working strictly)

$$
(E \otimes g \otimes G \otimes H) \circ(f \otimes B \otimes C \otimes h)
$$

STRING DIAGRAMS FOR MONOIDAL CATEGORIES

- Diagrams to represent expressions in monoidal categories

A	$A \otimes B$	$A \otimes B \xrightarrow{f} C \otimes D$	$A \otimes B \xrightarrow{f} C \otimes D \xrightarrow{g} E$	
t_{A}	t_{A}	t_{B}	C	

STRING DIAGRAMS FOR MONOIDAL CATEGORIES

Full treatment: André Joyal and Ross Street's Geometry of tensor calculus I.Advances in Mathematics |99। Hard to find online! :(

IDEA OFTHEOREM

- Theorem. These symbolic expressions form a (free strict) monoidal category.
- Theorem. (Suitably-defined) labelled diagrams form a strict monoidal category.
- Theorem. These categories are monoidally equivalent.
- Notion of diagram valuation and evaluation
- Canonical diagram construction

STRING DIAGRAMS FOR MONOIDAL CATEGORIES

- This gives us:
- Diagrams are a valid notation
- Deformations on a diagram preserves valuation in category
- We can do mathematics using these diagrams

ADDING STRUCTURE, AUGMENTING GRAPHS

- Can add more structure to a monoidal category
- Can augment graphical language to capture new axioms
- Some examples...

BRAIDING

- Add a braiding natural isomorphism
- Coherence
- Eg. category of braids

Full treatment: André Joyal and Ross Street's Braided tensor categories. Advances in Mathematics 1993

BRAIDING

- Theorem. (Joyal and Street) Free braided monoidal category is equivalent to category of labelled braids.
- Theorem. (Reidemeister) Manipulating braid diagrams corresponds exactly to isotopy on braided strings in 3-space.
- Corollary. (Joyal and Street) Two expressions are isomorphic iff the underlying braids are the same.

BRAIDING

- We see some horrendous braiding isomorphisms...

- ...are just the identity! We've saved a lot of chalk.

COMPACT CLOSED

- A symmetry is a selfinverse braiding
- Sets; Feynman diagrams; ...

- A compact closed

 category is symmetric with (right) duals- Vector spaces; ...

RIBBON

- A twist in a braided monoidal category is a natural isomorphism

$$
\theta_{A}: A \rightarrow A
$$

coherent with the braiding.

- A tortile or ribbon category is a braided monoidal category with a dual for each object and a twist (plus axioms)

RIBBON

RIBBON

- These compose to form pictures
- Like ribbon tangles in 3space!
- (Missing a lot of detail again...)
- Useful for knot invariants,
 quantum protocols

EVEN FURTHER

- Functorial boxes
- Higher categories

Melliès' Functorial boxes on string diagrams. Computer Science Logic 2006 pps.jussieu.fr/~mellies/papers/functorial-boxes.pdf Instructional videos:The Catsters' String diagrams. youtube.com/view play list?p=50ABC4792BD0A086

WHAT I'M DOING

- Similar motivations:
- Formalise graphical language people already use for argument
- Not a monoidal category!

GAME SEMANTICS

- Model computational environment as interaction "games"
- Player or proponent is system, opponent is environment
- Game is alternating sequence of moves
- Games model types
- Strategies for player model terms

GAME SEMANTICS

\mathbb{N}

- Example:
q
3
O
P

GAME SEMANTICS

$\begin{array}{llll}\mathbb{N} & \rightarrow & \mathbb{N} & \\ & & q & O \\ q & & & P \\ 3 & & & O \\ & & 4 & P\end{array}$

GAME SEMANTICS

- Arrow games, $A \multimap B$
- Two games in parallel
- Roles reversed roles on left
- Moves interleaved
- Interleaving is a schedule

SCHEDULES

- Originally definition combinatorial in nature
- Can be thought of as binary strings
- Or "collectively surjective" function pairs, or order relations
- Composition is highly combinatorial (and tricky)
- Associativity is difficult to establish

SCHEDULES

- Composition and associativity are tricky to do by hand
- People tend to use pictures

SCHEDULES

- Composition:

SCHEDULES

- Composition:
- Glue schedules
- Trace path through all nodes

SCHEDULES

- Composition:
- Glue schedules
- Trace path through all nodes

SCHEDULES

- Associativity becomes easy!
- "Juxtaposition in the plane is associative"

USES, RESEARCH

- Things I heard about at Logic and Interaction 2012
- Melliès' Tensorial logic

pps.jussieu.fr/~mellies/tensorial-logic.html
- Coecke, Duncan, Kissinger and Wang: categorical quantum mechanics

Theorem 3.6: Strong complementarity \Rightarrow complementarity. Proof:

USES, RESEARCH

- More things (off the top of my head):
- Girard's Proof nets
- Guglielmi's Atomic flows for deep inference
- Lafont's Algebraic theory of boolean circuits

Figure 23: The canonical forms of a matrix in $\mathbf{L}\left(\mathbb{Z}_{2}\right)$
iml.univ-mrs.fr/~lafont/pub/circuits.pdf

