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WHAT’S THE ISSUE?

• Symbolic expressions used in foundational mathematics

• Powerful methods

•Objects of study in themselves

• Can be technical and syntax-heavy

• Can be easy to make mistakes by hand and hard to spot 
structure
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WHAT’S THE ISSUE?

• Researchers have always found ways round this:

•Doodles in margins to help symbolic calculations

• Proofs-by-picture
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WHAT’S THE ISSUE?

• Pictures can capture important aspects of abstract structure 

• It’s not a coincidence that they’re so useful

•Many classes of graphs exhibit rich categorical structure

• That’s why they’re useful!
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STRING DIAGRAMS

• Just one type of example: monoidal categories with other 
structure

•Nice examples to demonstrate the ideas

Fantastic survey: Peter Selinger’s A survey of graphical languages for monoidal categories. New Structures for Physics 2011
Preprint: mathstat.dal.ca/~selinger/papers/graphical.pdf
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MONOIDAL CATEGORIES

• A monoidal category is a category with

• a bifunctorial tensor product, ⊗

• A specified “tensor unit”, I

• Associativity and identity natural isomorphisms, a, l, r, or 
strictness

• Coherence axioms
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MONOIDAL CATEGORIES

• Examples

•                     non-strict

•              category with binary products and terminal object

•        category of sets and relations

•                      strict

(Set,⇥, {⇤})

(C,⇥, t)

([C, C], �, idC)

Rel
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MONOIDAL EXPRESSIONS

Expressions in categories A B C
f : A ! B

“C” = idC : C ! C

A⌦B C ⌦D ⌦ E ⌦ F
f ⌦ g : A⌦ C ! B ⌦ C f ⌦ C : A⌦ C ! B ⌦ C

h : A⌦B ! C ⌦D ⌦ E ⌦ F
f : X ! X1 ⌦ · · ·⌦Xn

g : X1 ⌦ · · ·⌦Xn ! Y

g � f : X ! Y

Expressions in monoidal categories

g : B ! C g � f : A ! C
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MONOIDAL EXPRESSIONS

f : A ! E ⌦D

g : D ⌦B ⌦ C ! F

h : D ! G⌦H

(E ⌦ g ⌦ h) � (f ⌦B ⌦ C ⌦D)

k ?

(E ⌦ g ⌦G⌦H) � (f ⌦B ⌦ C ⌦ h)

•When are these equal due 
to monoidal axioms? 

•When are these equal in any 
monoidal category?

• (Again, working strictly)
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STRING DIAGRAMS FOR 
MONOIDAL CATEGORIES

•Diagrams to represent expressions in monoidal categories

A A⌦B A⌦B
f�! C ⌦D A⌦B

f�! C ⌦D
g�! E

A A B

A B

C D
f

A B

C D

E

f

g
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STRING DIAGRAMS FOR 
MONOIDAL CATEGORIES

A

E
D

B
C

F

D

G
H

f

g h

A

E
D

B
C

F

D

G
H

f

g

h

(E ⌦ g ⌦ h) � (f ⌦B ⌦ C ⌦D) = (E ⌦ g ⌦G⌦H) � (f ⌦B ⌦ C ⌦ h)

Full treatment: André Joyal and Ross Street’s Geometry of tensor calculus I. Advances in Mathematics 1991
Hard to find online! :(
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IDEA OF THEOREM

•Theorem. These symbolic expressions form a (free strict) 
monoidal category.

•Theorem. (Suitably-defined) labelled diagrams form a strict 
monoidal category.

•Theorem. These categories are monoidally equivalent.

•Notion of diagram valuation and evaluation

• Canonical diagram construction
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STRING DIAGRAMS FOR 
MONOIDAL CATEGORIES

• This gives us:

•Diagrams are a valid notation

•Deformations on a diagram preserves valuation in category

•We can do mathematics using these diagrams
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ADDING STRUCTURE, 
AUGMENTING GRAPHS

• Can add more structure to a monoidal category

• Can augment graphical language to capture new axioms

• Some examples...
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BRAIDING

• Add a braiding natural 
isomorphism

• Coherence

• Eg. category of braids

Full treatment: André Joyal and Ross Street’s Braided tensor categories. Advances in Mathematics 1993

A B

B A

γA,B

A B

=

== !=
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BRAIDING

•Theorem. (Joyal and Street) Free braided monoidal 
category is equivalent to category of labelled braids.

•Theorem. (Reidemeister) Manipulating braid diagrams 
corresponds exactly to isotopy on braided strings in 3-space.

•Corollary. (Joyal and Street) Two expressions are 
isomorphic iff the underlying braids are the same.
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BRAIDING

•We see some horrendous braiding isomorphisms...

• ...are just the identity!  We’ve saved a lot of chalk.

=
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COMPACT CLOSED

• A symmetry is a self-
inverse braiding

• Sets; Feynman diagrams; ...

• A compact closed 
category is symmetric with 
(right) duals

• Vector spaces; ...

= =

dA : I ! A⇤ ⌦A eA : A⌦A⇤ ! I
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Graphs: State Machines
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Lucas Dixon Graphical Reasoning in Symmetric Monoidal Categories 25 Jan 2010
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Graphs: circuits, electrical and quantum
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Lucas Dixon Graphical Reasoning in Symmetric Monoidal Categories 25 Jan 2010
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Graphs: Feynman Diagrams

g
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e
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Lucas Dixon Graphical Reasoning in Symmetric Monoidal Categories 25 Jan 2010

dream.inf.ed.ac.uk/projects/
quantomatic/talks/

cambridge-2010-2x2.pdf

dA : I ! A⇤ ⌦A eA : A⌦A⇤ ! I
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RIBBON

• A twist in a braided monoidal category is a natural 
isomorphism

coherent with the braiding.

• A tortile or ribbon category is a braided monoidal 
category with a dual for each object and a twist (plus axioms)

✓A : A ! A

Full story: Mei Chee Shum’s Tortile tensor categories. Journal of Pure and Applied Algebra 1994
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RIBBON

Braiding Duals Twist

A

A

θA
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RIBBON

• These compose to form 
pictures

• Like ribbon tangles in 3-
space!

• (Missing a lot of detail 
again...)

• Useful for knot invariants, 
quantum protocols
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EVEN FURTHER

• Functorial boxes

• Higher categories

Melliès’ Functorial boxes on string diagrams. Computer Science Logic 2006 pps.jussieu.fr/~mellies/papers/functorial-boxes.pdf
Instructional videos: The Catsters’ String diagrams. youtube.com/view_play_list?p=50ABC4792BD0A086

u

F

f

F

FA

FU

FB

V

FV

= f

u

F

FA

FB
FU

V

=

u

f

F

FA

FB

U
V

Tightening (Naturality in A and B). The proof is very similar to the proof
of the sliding equality. Because the functor F is faithful, we will deduce the
equality

a

b

a

b

f f=

from the equality by F of the image of the two morphisms in the target
category:

a

b

a

b

f f

F F

=

FAFA

FBFB

This is established as follows. Once the definition of tr applied, we separate
the box in three parts, using Equation (7) for lax monoidal functors, and its
colax variant:

28
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WHAT I’M DOING

• Similar motivations:

• Formalise graphical language people already use for 
argument

•Not a monoidal category!
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GAME SEMANTICS

•Model computational environment as interaction “games”

• Player or proponent is system, opponent is environment

• Game is alternating sequence of moves

• Games model types

• Strategies for player model terms
Many introductions around. Here’s slides from a recent talk by Guy McCusker at LI2012: 

li2012.univ-mrs.fr/media/talk19/mccusker-lectures.pdf
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GAME SEMANTICS

• Example:

N

q O
3 P
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GAME SEMANTICS

• Example:

N ! N
q O

q P
3 O

4 P
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GAME SEMANTICS

• Arrow games, A ⊸ B

• Two games in parallel

• Roles reversed roles on left

•Moves interleaved

• Interleaving is a schedule
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SCHEDULES

•Originally definition combinatorial in nature

• Can be thought of as binary strings

•Or “collectively surjective” function pairs, or order relations

• Composition is highly combinatorial (and tricky)

• Associativity is difficult to establish
Good stuff here: Russ Harmer, Paul-André Melliès and Martin Hyland’s Categorical combinatorics for innocent strategies. LICS 2007 

pps.jussieu.fr/~mellies/papers/lics2007-categorical-combinatorics.pdf
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SCHEDULES

• Composition and 
associativity are tricky to do 
by hand

• People tend to use pictures

Guy McCusker, John Power and Cai Wingfield’s A graphical foundation for schedules. MFPS 2012, ENTCS
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SCHEDULES

• Composition:

• Glue schedules

• Trace path through all 
nodes

+
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SCHEDULES

• Composition:

• Glue schedules

• Trace path through all 
nodes
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SCHEDULES

• Composition:

• Glue schedules

• Trace path through all 
nodes
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SCHEDULES

• Associativity becomes easy!

• “Juxtaposition in the plane 
is associative”
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USES, RESEARCH

• Things I heard about at 
Logic and Interaction 2012

•Melliès’ Tensorial logic

• Coecke, Duncan, Kissinger 
and Wang: categorical 
quantum mechanics

Proofs as 3-dimensional string diagrams

The left-to-right proof of the sequent

¬¬A ⌦ ¬¬B ` ¬¬(A ⌦ B)

is depicted as



+


+
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R
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L

L

L

67¬¬A⌦ ¬¬B ` ¬¬(A⌦B)

This leads to a simple classical vs. quantum diagrammatic
paradigm that applies to arbitrary observables in any †-SMC
[13]: classical systems are encoded as a single wire and
quantum systems as a double wire. The same applies to
operations, and m and m† allow passage between these
types.
Note that the classical data will ‘remember’ to which

observable it relates, cf. the encoding
∑

i pi |xi〉. This is
physically meaningful since, for example, when one measures
position the resulting value will carry specification of the
length unit in which it is expressed. If one wishes to avoid
interconversion of this ‘classical data with memory’, one could
fix one observable, and unitarily transform the quantum data
before measuring. Indeed, if

U

=

U∗ U

then U∗ U

measures the O -observable but produces O -data. In FHilb,
all observable structures are unitarily isomorphic, so any pro-
jective measurement can be obtained in this way. A particularly
relevant example is when these unitaries are phases with
respect the another observable structure O .

mα := -α α (7)

When O is induced by the Pauli spin-Z observable and
O by the Pauli spin-X observable, then m = m0 is an X

measurement and m
π/2 is a Y measurement. Note however,

that both produce Born vectors of outcome probabilities with
respect to the basis. This will be useful in the sections to
come.

III. STRONG COMPLEMENTARITY

Definition 3.1: A pair (O ,O ) of observables on the same
object X is complementary iff:

S =
(C)

where S = .

If at least one of the two observables has ‘enough classical
points’, this equation holds if and only if the classical points
of one observable are ‘unbiased’ (in sense of [8]) for the
other observable. Every observable in FHilb has enough
classical points, hence we reclaim the usual notion of quantum
complementarity, and extend it to a more general setting.
Definition 3.2: A pair (O ,O ) of observables on the same

object X is coherent iff:

= = = .

In other words, ε is proportional to a classical point for O ,
and vice versa.

= =
i j

We will assume that the scalar is always cancelable.
Proposition 3.3: In FHilb if O and O are self-adjoint

operators correspoding to complementary observables, one
can always choose a pair of coherent observable structures
(O ,O ) whose classical points correspond to the eigenbases
of O and O .

Proof: (sketch) The eigenbasis of a non-degenerate self-
adjoint operator is only determined up to global phases. For a
pair of mutually unbiased bases, it is always possible to choose
these phases such that coherence is satisfied.
For this reason we will from now on assume that pairs of

complementary observables are always coherent.
Definition 3.4: A pair (O ,O ) of observables on the same

object X is strongly complementary iff they are coherent and:

= (8)

Viewing one observable as monoid and the other as
comonoid, the properties of coherence and strong complemen-
tarity state that a strongly complementary pair (O ,O ) form
a scaled bialgebra; that is, the defining equations of a bialgebra
[37] hold upto a scalar multiple.
The following results about the antipode for a strongly

complementary pair were shown in [28].
Lemma 3.5: Under the assumption that classical points are

self-conjugate in their own colour, and of ‘enough points’,
the antipode S is self-adjoint, and is a Frobenius algebra
endomorphism in both colours.
In fact we can go further.
Theorem 3.6: Strong complementarity ⇒ complementarity.
Proof:

S

S = = = = =

S

As a consequence, strongly complementary observables
always form a scaled Hopf algebra. Note that Theorem 3.6
relies on the fact that both the monoid and the comonoid
form a Frobenius algebra; it is certainly not the case that every
scaled bialgebra is a Hopf algebra.
The converse to Theorem 3.6 does not hold: it is possible

to find coherent complementary observables in FHilb which
are not strongly complementary. See [9] for a counterexample.

A. Strong complementarity and phase groups
For complementary observables, classical points of one

observable are always included in the phase group of the other
observable, up to a normalizing scalar. Strong complementary
strengthens this property to inclusion as a subgroup. Let K

pps.jussieu.fr/~mellies/tensorial-logic.html

arxiv.org/abs/1203.4988
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USES, RESEARCH

•More things (off the top of 
my head):

• Girard’s Proof nets

• Guglielmi’s Atomic flows for 
deep inference

• Lafont’s Algebraic theory of 
boolean circuits

→ →

→ →

→ →

→ →

Figure 3: Local rewrite rules

The reason is that there can be cycles composed of paths
connecting instances of the ai↓ and ai↑ generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to cw

→, and this normal
form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [10]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since cw

→ preserves the prop-
erty of being weakly streamlined, and in the normal form
there are no more redexes for cw

→, there is no generator ai↓,
aw↓, ac↓ above a generator ai↑, aw↑, ac↑.

5 Global Flow Transformations
The purpose of this section is to present a method for

transforming any atomic flow into a weakly streamlined
one. The challenge is acually to find an operation that can be
lifted to proofs in a deductive system. Here, we present one
that breaks paths in the flow without removing any edge.
This construction can be considered to be the heart of this
paper.

Definition 5.1. Let φ be an atomic flow of the shape

φ =

a ā

ψ

a ā

, (5)

where the edges of the selected ai↓ and ai↑ generators carry
the same atomic types, as indicated in (5), and let φ′ be the

atomic flow

φ′ =

a ā

ψ

a

ā

ā

ψ

a

ā

a

ψ

a ā

. (6)

Then we call φ′ a path breaker of φ with respect to a, and
write φ pb

→a φ
′.

Lemma 5.2. Let φ and φ′ be given with φ pb
→a φ

′, and let b
be any atomic type. If φ is weakly streamlined with respect
to b, then so is φ′.

Proof. The only edges connecting an output of one copy of
ψ to an input of another copy of ψ are typed by a and ā.
Thus, the lemma is evident for b $= a and b $= ā. Let us now
assume b = a and proceed by contradiction. Assume there
is an ai↓ generator connected to an ai↑ generator via a path
typed by a. If this is inside a copy of ψ, we have a contra-
diction; if it passes through the a-edge between the upper
and the middle copy of ψ in (6), then this path connects to
the ai↓ in (5), which also is a contradiction. Similarly for a
path typed by ā.

Lemma 5.3. Let φ, ψ, and a be given as in (5), and let
φ

pb
→a φ

′. If ψ is ai-free with respect to a, then φ′ is weakly
streamlined with respect to a.

Proof. For not being weakly streamlined with respect to a,
we would need a path connecting the upper ai↓ in (6) to the
lower ai↑. However, such a path must pass through both the
evidenced edge of type a and the evidenced edge of type ā,
which is impossible (see Remark 2.2).

Lemmas 5.2 and 5.3 justify the name path breaker for
the atomic flow in (6). It breaks all paths between the upper
ai↓ and the lower ai↑ in (5), and it does not introduce any
new paths. Furthermore, the interior of the flow ψ is not
touched.
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Figure 23: The canonical forms of a matrix in L(Z2)

Figure 24: Rules for L(Z2)

=== = = === =

==

Figure 25: Deriving rules for L(Z2)
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Figure 26: Expansion of identities for L(Z2)
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Want to draw nice string diagrams for LaTeX? Check out Aleks Kissinger’s 
cross-platform GUI front-end to TikZ, TikZiT: tikzit.sourceforge.net/

alessio.guglielmi.name/res/cos/

iml.univ-mrs.fr/~lafont/pub/circuits.pdf
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