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• Many arguments in game semantics are informally communicated using 
pictures.

• Researchers have found the Euclidean plane (page, board, screen) sufficient 
to encode some of their structures compositionally.

• For example:

• Descriptions of interleaving in games.

• Composition of strategies.

• Pointers for backtracking.
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Our work aims to...

• Characterise some of the diagrams used.

• Schedules for ⊸ and ⊗, interleaving graphs, pointers.

• Formally describe graphical methods and arguments.

• Let games be given by their diagrams, rather than the correspondence being 
informal or suggestive.

• Let intuitive arguments become proofs in terms of the definitions.

• Give examples of such arguments for categorical properties of games.
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• Combinatorial schedules for ⊸ and ⊗ were introduced by Harmer, Hyland and 
Melliès in 2007.

• Our formal setting for graphs is that of Joyal and Street’s work in string 
diagrams from the 1980s and 1990s.

• Directed acyclic multigraphs in the plane, (usually up to deformation).

• In our examples, edges are oriented downwards and...

• Schedules have nodes on either side of a vertical strip.

• n-Interleaving graphs have nodes arranged in n vertical lines.
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Figure 6: Colouring of nodes.

In fact, it is the case that any progressive path with nodes on either side of a vertical strip of
R2 which is coloured in this way is a schedule. The colouring scheme encodes the “dynamics” of
a schedule, as an alternative to (1) and (2), locally and in terms of colours on the nodes rather
than by the explicit odd–evenness of distance from the first node. By colouring, we attach to
each node its parity in its schedule.

Figure 6(a) shows our original schedule from Figure 1(a) decorated in this way. Observe that (2)
is satisfied if and only if this colour scheme is followed.

Note that edges are always directed ○ → ● if they move from one side to the other (this is the
switching condition for ⊸ [18]). Thus, if some pi is black and pi+1 is white, then {pi, pi+1} ⊂ U
or ⊂ V . When composing schedules, the colours in the two copies of the internal nodes will be
precisely reversed in each schedule. We can show this using !" and #" for the internal nodes of
the composition diagram, such as the one in Figure 6(f). Were we to have two cross-schedule
edges from the same internal node, it is not the case that both of them could be ○→ ●, since the
internal node is different colours in both component schedules; hence such a scenario is impossible.
Similarly for two cross-schedule edges to the same internal node. Figures 6(d) and 6(e) show the
hypothetical fragments with a choice of colours, and the illegal edges marked with a ×. An
analogous arguments using state diagrams exist elsewhere in the game semantics literature; for
example, [18, 8].

Definition 16. Let S ∶ Um → Vn be a ⊸-schedule. The truncation to j < k of S is the ⊸-
schedule S ↾j obtained by removing all parts of S strictly below the horizontal line through the
j-th node along the path order of S.
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In fact, it is the case that any progressive path with nodes on either side of a vertical strip of
R2 which is coloured in this way is a schedule. The colouring scheme encodes the “dynamics” of
a schedule, as an alternative to (1) and (2), locally and in terms of colours on the nodes rather
than by the explicit odd–evenness of distance from the first node. By colouring, we attach to
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Figure 9: A three-way composition diagram with composite path highlighted. Note that, since
we must always cross between schedules on reaching an internal node, there are no choices to be
made.

u1 = p1

u2 = p4
u3 = p5

u4 = p8
p7 = u′4
p6 = u′3

p3 = u′2
p2 = u′1

⋮

Figure 10: A prefix fragment of an identity schedule.
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made.

u1 = p1
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u4 = p8
p7 = u′4
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p3 = u′2
p2 = u′1
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• Composition of schedules is 
associative.

• Form 3-fold composition 
diagram.

• Either remove the right-hand 
⌇ first...

• Or the left-hand ⌇.

• Also shows that composition of 
strategies is associative, giving a 
category of graphical games.
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Figure 38: All complete plays for B⊗B.
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Figure 39: The schedules giving all complete plays of the strategy t⊗t ∶ B⊗B.

A⊗B where plays are given by labelled ⊗-schedules which are even-length truncations
of those labelled ⊗-schedules giving complete plays, subject to the condition that the
longest common truncation of any two is of even length.

Example 93. The strategy t⊗t ∶ B⊗B is given by the labelled schedules in Figure 39.

3.4 Graphical representations of games with more than two
components

So far, the �-schedules and ⊗-schedules used to describe the interleaving of plays in
games only describe the interleaving across two components, such as in a game A� B
or A⊗B. If a game has a more complex structure, the plays are more complicated.

For example, consider the game A� (B⊗C). A position of A� (B⊗C) is a triple(S, a, x), where S is a �-schedule, a is a position of Â and x is a position of B⊗C.
x is therefore itself a triple (T, b, c), with T a ⊗-schedule, b a position of B̂ and c a
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Unfolding and folding

• There’s also a reverse folding process.

• Unfolding is an isomorphism of games.

• It respects truncation, giving an isomorphism at the level of the game 
forests.

• Two games are isomorphic if their unfolded forms are the same (up to 
deformation).

• We can say, for example:

• “Every position of (A ⊗ B) ⊸ C is a position of A ⊸ (B ⊸ C).  The first move is 
in C, subsequent moves come in pairs in A, B or C.”



Symmetry

S⊗p,q I ⊗S I G ∈ bX,Y

(a) Construction of G from I ⊗S I.

S̄ S̄,G S̄�G ∼ S

(b) ¯S�G ∼ S.

Figure 47: Symmetric structure on Game.
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Pointers and (parity) heaps
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(a) An O-heap.
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(b) The same O-heap. In this arrangement, the
ordering of the nodes is recorded by their verti-
cal position and so the labels are superfluous.

Figure 49: Two O-heap graphs for the same O-heap.
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Heap graphs

• An O-heap is a parity heap 
where only O-moves may not  
be immediate predecessors.

(a) The schedule S ∶
6→ 6.

(b) The O-heap
graph � on{1, . . . ,6}.

(c) The P-heap graph
 on {1, . . . ,6}.

(d) S, � and  drawn together. (e) The O-heap [ , S,�].
Figure 51: The construction [ , S,�].

Remark 150. The alternating natures of �-schedules, O-heaps and P-heaps means
that the edges we take in (C3) are exactly those which are not required to exist by the
definitions of the components.

Definition 151. Let � be a heap graph with set of nodes G
0

. Then the underlying heap
� acts as a heap structure on G

0

. For any X ⊆ G
0

, the heap structure on X achieved
by removing from � all nodes corresponding to G

0

�X and all attached edges is the
restriction of � to X, written � �

X

. The underlying heap of � �
X

is written � �
X

.

Example 152. Let S ∶ 6→ 6 be the �-schedule in Figure 51(a), � be the O-heap graph
shown in Figure 51(b) and � be the P-heap graph shown in Figure 51(c).

We construct the heap graph [ , S,�] by step (C2) (shown in Figure 51(d)), step (C3)
(shown in Figure 51(e)).
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 P �O

�

� ,��

(a) Construction of a heap pair� ,�� from heaps  P and �O.

� ,��

�

�O P

(b) Heaps  P and �O may be recov-
ered from any parity heap ⌦.

Figure 61: Every parity heap is made of an O-heap and a P-heap.

• The outward edge from an odd-parity node taken from �

• The outward edge from an even-parity node taken from  

Remark 217. A similar construction appears in [HHM07], but, as with the [ , S,�]
construction, we write the symbols in the reverse order here, and for similar reasons.

Remark 218. Equivalently, we can define � ,�� to be constructed by placing  
in standard configuration with its edges on the left of its nodes, and � in standard
configuration with its edges to the right of its nodes, so that  ’s and �’s corresponding
nodes coincide, and then removing the familiar “extended ���” shape. This shape is
comprised of exactly those edges of  and � which are forced to exist by the definitions
of P- and O-heaps, but are not particular to  and �.

Conversely, from a parity heap graph ⌦, we can recover a P-heap  and an O-heap �
on the same nodes by adding in the “extended ���” edges.

Both of these can be seen in Figure 61

Observe that � is an O-heap if and only if � = �⇧,��, and that � is a P-heap if and
only if � = ��,⇧�.
In terms of our current definitions of ! and ?, a game !?A would be given by

(!?A)(k) = (!(?A))(k) = {(�,����⇀( ,�⇀a )) � �-threads are plays of ?A}
I.e., � is an O-heap whose nodes are labelled by P-heaps such that each �-thread is
labelled by successive truncations of the same P-heap.

However, in a similar fashion to the discussion of !!A in Section 4.4.2, we can five the
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• Given a game A, the game !A 
has as positions O-heaps 
labelled such that each path is 
a play in A.



Heaps for backtracking: !

!B(1) ∶
!B(2) ∶

!B(3) ∶

!B(4) ∶

�

q

t f

q q

q q

q

t

q

f

t f

qq

t f

qq

t

q

t

q

q q

f

f

!B(5) ∶
with ⇡

!B given by truncation of labelled heap graphs.

In this way !B can viewed as N copies of the game B, but where a new copy may only
be opened by O, and only when the previous copy has been opened.

Though we are used to thinking of a game A as given by its finite game tree, in more
complicated cases it may be harder to think about the game !A in these terms, as its
tree necessarily has infinite depth.

We will show that the assignment ! extends to a functor Game → Game. First, let us
examine a game !A�!B.

Remark 196. Moves of !A are O-heaps �, labelled with moves in A, such that every
labelled �-thread is a play of A. The parent function ⇡

!A

is given by truncation of these
O-heaps. Likewise for !B. Moves of !A�!B are thus triples

(!A�!B)(k) = {(S
m,n

, (�
m

,�⇀a ), ( 
n

,
�⇀
b )) � . . .

m + n = k, . . .

�
m

-threads are plays in A, . . .

 
n

-threads are plays in B}
with ⇡

!A�!B

given by truncation of the�-schedule S. Technically, the nodes of S ∶ U
m

→
V
n

are labelled with labelled O-heaps, but since in U
m

the labels are entirely determined

125

• Given a game A, the game !A 
has as positions O-heaps 
labelled such that each path is 
a play in A.

• For example:
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Combining pointers and schedules: S*Φ

∗

(a) Removing (declassifying) this node does not
produce a graph which is a heap graph.

∗

(b) Instead we must draw two new edges.

Figure 52: A case where the simplified version of Definition 155 does not work.

(a) ⇧, S, as in the construction
of [⇧, S,�]. (b) [⇧, S,�].

(c) S∗�.

Figure 53: The construction of S∗�.

107

p q

S, Π, Φ



Combining pointers and schedules: S*Φ

∗

(a) Removing (declassifying) this node does not
produce a graph which is a heap graph.

∗

(b) Instead we must draw two new edges.

Figure 52: A case where the simplified version of Definition 155 does not work.

(a) ⇧, S, as in the construction
of [⇧, S,�]. (b) [⇧, S,�].

(c) S∗�.

Figure 53: The construction of S∗�.

107

p q

[Π, S, Φ]

∗

(a) Removing (declassifying) this node does not
produce a graph which is a heap graph.

∗

(b) Instead we must draw two new edges.

Figure 52: A case where the simplified version of Definition 155 does not work.

(a) ⇧, S, as in the construction
of [⇧, S,�]. (b) [⇧, S,�].

(c) S∗�.

Figure 53: The construction of S∗�.

107

p q

S, Π, Φ



Combining pointers and schedules: S*Φ

∗

(a) Removing (declassifying) this node does not
produce a graph which is a heap graph.

∗

(b) Instead we must draw two new edges.

Figure 52: A case where the simplified version of Definition 155 does not work.

(a) ⇧, S, as in the construction
of [⇧, S,�]. (b) [⇧, S,�].

(c) S∗�.

Figure 53: The construction of S∗�.

107

p

S*Φ

∗

(a) Removing (declassifying) this node does not
produce a graph which is a heap graph.

∗

(b) Instead we must draw two new edges.

Figure 52: A case where the simplified version of Definition 155 does not work.

(a) ⇧, S, as in the construction
of [⇧, S,�]. (b) [⇧, S,�].

(c) S∗�.

Figure 53: The construction of S∗�.

107

p q

[Π, S, Φ]

∗

(a) Removing (declassifying) this node does not
produce a graph which is a heap graph.

∗

(b) Instead we must draw two new edges.

Figure 52: A case where the simplified version of Definition 155 does not work.

(a) ⇧, S, as in the construction
of [⇧, S,�]. (b) [⇧, S,�].

(c) S∗�.

Figure 53: The construction of S∗�.

107

p q

S, Π, Φ



! for strategies



! for strategies

• For σ : A ⊸ B...



! for strategies

• For σ : A ⊸ B...

• !σ : !A ⊸ !B is a strategy of 
plays
      (S, (S*Φ, a), (Φ, b))
so that:



! for strategies

• For σ : A ⊸ B...

• !σ : !A ⊸ !B is a strategy of 
plays
      (S, (S*Φ, a), (Φ, b))
so that:

(E2) [⇧, S, ]-threads are deformable into positions of � without moving nodes.

Theorem 200. If � ∶ A� B is a strategy then !� ∶!A�!B is a strategy.

See Appendix A.4.3 for an example of a strategy !�.

Theorem 201. ! is a functor Game → Game.

Proof. We are required to prove
!

A

= 
!A

(4.4)

and, for strategies � ∶ A� B and ⌧ ∶ B � C,

!��!⌧ =!(��⌧) (4.5)

Identities. From the definitions, the strategy 
!A

is the set of all positions

�O I

aa
�O

and the strategy !
A

is given by all positions

S∗� S

aa
�O

subject to the condition that [⇧, S,�]-threads are plays of 
A

(when taken as schedules).
So it remains for us to prove that S ∼ I (and hence that S∗� = �, by Lemma 169).

Consider some P-move (even-parity) on the right-hand side of the graph

S∗� S

aa
�O

The thread of this move in [⇧, S,�] starts with an edge of S, and also must be a copycat
(as it plays 

A

), so it must be an edge across S from right to left. Likewise the thread
of any P-move on the left-hand side of [⇧, S,�] starts with a thread across S from left
to right. Therefore S is a copycat schedule and (4.4) holds.
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The thread of this move in [⇧, S,�] starts with an edge of S, and also must be a copycat
(as it plays 

A

), so it must be an edge across S from right to left. Likewise the thread
of any P-move on the left-hand side of [⇧, S,�] starts with a thread across S from left
to right. Therefore S is a copycat schedule and (4.4) holds.
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!! for the comonad

• !!G for some game G is a heap 
graph whose nodes are heap 
graphs.

• As before, we can understand 
this in a simpler way.

• Same for !!!G, ???G, !?!G, etc., 
using O-heaps, P-heaps and 
decomposed parity heaps.

• Comonad axioms are 
straightforward.

• For example...

a

�

so that the strategy "
!A

∶!!A�!A consists of positions

� I

a

�

a

⇧�

so that �
A

�"
!A

∶!A�!A consists of compositions

a
a

I� �

a
a

⇧I �� ⇧��

i.e.

a

I�

a

�

which is exactly a play of id
!A

∶!A�!A. So (4.10) holds.

Similarly the strategy !"
A

∶!!A�!A consists of positions

� I

a

�

a

��

so that the composition �
A

�!"
A

∶!A�!A is

a
a

I� �

a
a

�I �� ���

and (4.11) holds, as required.
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Summary

• Characterisation of diagrams used 
to intuitively communicate ideas.

• Schedules.

• General interleaving.

• Pointers.

• Robust graphical framework 
extended from the literature.

• Use graphical methods to give 
“easy” proofs of key properties.

• Associativity of composition of 
strategies.

• Symmetric monoidal closure of 
category of games.

• Arguments use fundamental 
properties of the plane (“left”, 
“right”) to encode properties 
without reindexing.


