Graphical Foundations for Dialogue Games

Guy McCusker, John Power, Cai Wingfield

Mathematical Foundations Group
University of Bath

GaLoP VIII - 19th July 2013
Queen Mary University of London

Motivation

Motivation

- Many arguments in game semantics are informally communicated using pictures.

Motivation

- Many arguments in game semantics are informally communicated using pictures.
- Researchers have found the Euclidean plane (page, board, screen) sufficient to encode some of their structures compositionally.

Motivation

- Many arguments in game semantics are informally communicated using pictures.
- Researchers have found the Euclidean plane (page, board, screen) sufficient to encode some of their structures compositionally.
- For example:

Motivation

- Many arguments in game semantics are informally communicated using pictures.
- Researchers have found the Euclidean plane (page, board, screen) sufficient to encode some of their structures compositionally.
- For example:
- Descriptions of interleaving in games.

Motivation

- Many arguments in game semantics are informally communicated using pictures.
- Researchers have found the Euclidean plane (page, board, screen) sufficient to encode some of their structures compositionally.
- For example:
- Descriptions of interleaving in games.
- Composition of strategies.

Motivation

- Many arguments in game semantics are informally communicated using pictures.
- Researchers have found the Euclidean plane (page, board, screen) sufficient to encode some of their structures compositionally.
- For example:
- Descriptions of interleaving in games.
- Composition of strategies.
- Pointers for backtracking.

Our work aims to...

Our work aims to...

- Characterise some of the diagrams used.

Our work aims to...

- Characterise some of the diagrams used.
- Schedules for \rightarrow and \otimes, interleaving graphs, pointers.

Our work aims to...

- Characterise some of the diagrams used.
- Schedules for \rightarrow and \otimes, interleaving graphs, pointers.
- Formally describe graphical methods and arguments.

Our work aims to...

- Characterise some of the diagrams used.
- Schedules for \rightarrow and \otimes, interleaving graphs, pointers.
- Formally describe graphical methods and arguments.
- Let games be given by their diagrams, rather than the correspondence being informal or suggestive.

Our work aims to...

- Characterise some of the diagrams used.
- Schedules for \rightarrow and \otimes, interleaving graphs, pointers.
- Formally describe graphical methods and arguments.
- Let games be given by their diagrams, rather than the correspondence being informal or suggestive.
- Let intuitive arguments become proofs in terms of the definitions.

Our work aims to...

- Characterise some of the diagrams used.
- Schedules for \rightarrow and \otimes, interleaving graphs, pointers.
- Formally describe graphical methods and arguments.
- Let games be given by their diagrams, rather than the correspondence being informal or suggestive.
- Let intuitive arguments become proofs in terms of the definitions.
- Give examples of such arguments for categorical properties of games.

Which diagrams to characterise?

Which diagrams to characterise?

	σ			τ	
	\multimap	B	B	\multimap	C
					c_{1}
			b_{1}		
		b_{1}			
		b_{2}			
			b_{2}		
		\vdots	\vdots		
		b_{k}			
a_{1}					

Which diagrams to characterise?

Schedules and interleaving graphs

Schedules and interleaving graphs

- Combinatorial schedules for \rightarrow and \otimes were introduced by Harmer, Hyland and Melliès in 2007.

Schedules and interleaving graphs

- Combinatorial schedules for \rightarrow and \otimes were introduced by Harmer, Hyland and Melliès in 2007.
- Our formal setting for graphs is that of Joyal and Street's work in string diagrams from the 1980s and 1990s.

Schedules and interleaving graphs

- Combinatorial schedules for \rightarrow and \otimes were introduced by Harmer, Hyland and Melliès in 2007.
- Our formal setting for graphs is that of Joyal and Street's work in string diagrams from the 1980s and 1990s.
- Directed acyclic multigraphs in the plane, (usually up to deformation).

Schedules and interleaving graphs

- Combinatorial schedules for \rightarrow and \otimes were introduced by Harmer, Hyland and Melliès in 2007.
- Our formal setting for graphs is that of Joyal and Street's work in string diagrams from the 1980s and 1990s.
- Directed acyclic multigraphs in the plane, (usually up to deformation).
- In our examples, edges are oriented downwards and...

Schedules and interleaving graphs

- Combinatorial schedules for \rightarrow and \otimes were introduced by Harmer, Hyland and Melliès in 2007.
- Our formal setting for graphs is that of Joyal and Street's work in string diagrams from the 1980s and 1990s.
- Directed acyclic multigraphs in the plane, (usually up to deformation).
- In our examples, edges are oriented downwards and...
- Schedules have nodes on either side of a vertical strip.

Schedules and interleaving graphs

- Combinatorial schedules for \rightarrow and \otimes were introduced by Harmer, Hyland and Melliès in 2007.
- Our formal setting for graphs is that of Joyal and Street's work in string diagrams from the 1980s and 1990s.
- Directed acyclic multigraphs in the plane, (usually up to deformation).
- In our examples, edges are oriented downwards and...
- Schedules have nodes on either side of a vertical strip.
- n-Interleaving graphs have nodes arranged in n vertical lines.

Schedules for -

Schedules for \rightarrow

Schedules for -

Schedules for \rightarrow

- Given games A and B, the game $A \multimap B$ is that of all positions (S, a, b) such that:
- $S: m \rightarrow n$.
- $a \in A(m)$.
- $b \in B(n)$.
- Predecessor given by truncation.

Composition of schedules

Copycat schedules

Copycat schedules

Copycat schedules

Copycat schedules

Copycat schedules

Copycat schedules

Copycat schedules

Copycat schedules

Copycat schedules

Copycat schedules

Associativity of composition

Associativity of composition

- Composition of schedules is associative.

Associativity of composition

- Composition of schedules is associative.
- Form 3-fold composition diagram.

Associativity of composition

- Composition of schedules is associative.
- Form 3-fold composition diagram.

Associativity of composition

- Composition of schedules is associative.
- Form 3-fold composition diagram.

Associativity of composition

- Composition of schedules is associative.
- Form 3-fold composition diagram.

Associativity of composition

- Composition of schedules is associative.
- Form 3-fold composition diagram.

Associativity of composition

- Composition of schedules is associative.
- Form 3-fold composition diagram.
- Either remove the right-hand \} first...

Associativity of composition

- Composition of schedules is associative.
- Form 3-fold composition diagram.
- Either remove the right-hand \} first...
- Or the left-hand 3 .

Associativity of composition

- Composition of schedules is associative.
- Form 3-fold composition diagram.
- Either remove the right-hand \} first...
- Or the left-hand 3 .
- Also shows that composition of strategies is associative, giving a category of graphical games.

Schedules for \otimes

Interleaving graphs

$$
(\mathbb{N} \quad \Rightarrow \quad \mathbb{N} \quad \Rightarrow \quad \mathbb{N}) \quad \Rightarrow \quad \mathbb{N}
$$

Interleaving graphs

Interleaving graphs

$$
(\mathbb{N} \quad \Rightarrow \quad \mathbb{N} \quad \Rightarrow \quad \mathbb{N}) \quad \Rightarrow \quad \mathbb{N}
$$

Two representations of plays: unfolding and folding

$$
A \quad \multimap \quad\left(\left(X_{1} \quad \multimap \quad X_{2}\right) \quad \otimes \quad C\right)
$$

Unfolding and folding

Unfolding and folding

- There's also a reverse folding process.

Unfolding and folding

- There's also a reverse folding process.
- Unfolding is an isomorphism of games.

Unfolding and folding

- There's also a reverse folding process.
- Unfolding is an isomorphism of games.
- It respects truncation, giving an isomorphism at the level of the game forests.

Unfolding and folding

- There's also a reverse folding process.
- Unfolding is an isomorphism of games.
- It respects truncation, giving an isomorphism at the level of the game forests.
- Two games are isomorphic if their unfolded forms are the same (up to deformation).

Unfolding and folding

- There's also a reverse folding process.
- Unfolding is an isomorphism of games.
- It respects truncation, giving an isomorphism at the level of the game forests.
- Two games are isomorphic if their unfolded forms are the same (up to deformation).
- We can say, for example:

Unfolding and folding

- There's also a reverse folding process.
- Unfolding is an isomorphism of games.
- It respects truncation, giving an isomorphism at the level of the game forests.
- Two games are isomorphic if their unfolded forms are the same (up to deformation).
- We can say, for example:
- "Every position of $(A \otimes B) \multimap C$ is a position of $A \multimap(B \multimap C)$. The first move is in C, subsequent moves come in pairs in A, B or C."

Symmetry

Symmetry

Symmetry

Symmetry

Symmetry

Symmetry

Symmetry

Pointers and (parity) heaps

Pointers and (parity) heaps

Heap graphs

Heap graphs

- An O-heap is a parity heap where only O-moves may not be immediate predecessors.

Heap graphs

- An O-heap is a parity heap where only O-moves may not be immediate predecessors.
- A P-heap is one where only P-moves may not be.

Heap graphs

- An O-heap is a parity heap where only O-moves may not be immediate predecessors.
- A P-heap is one where only P-moves may not be.
- Any parity heap graph can be composed/decomposed into an O-heap and a P-heap.

Heaps for backtracking: !

Heaps for backtracking: !

- Given a game A, the game $!A$ has as positions O-heaps labelled such that each path is a play in A.

Heaps for backtracking: !

- Given a game A, the game $!A$ has as positions O-heaps labelled such that each path is a play in A.
- For example:

Combining pointers and schedules: $S^{*} \Phi$

Combining pointers and schedules: $S^{*} \Phi$

S, П, Ф

Combining pointers and schedules: $S^{*} \Phi$

Combining pointers and schedules: $S^{*} \Phi$

$S, \sqcap, Ф$

$[\square, S, \Phi]$
p
$\stackrel{0}{\bullet}$

0
$S^{\star} \Phi$
! for strategies
! for strategies

- For $\sigma: A \multimap B . .$.

! for strategies

- For $\sigma: A \multimap B . .$.
$\cdot!\sigma:!A \rightarrow!B$ is a strategy of plays
$\left(S,\left(S^{*} \Phi, \underline{a}\right),(\Phi, \underline{b})\right)$
so that:

! for strategies

- For $\sigma: A \rightarrow B \ldots$
- ! $\sigma!A \sim!B$ is a strategy of plays
$\left(S,\left(S^{*} \Phi, \underline{a}\right),(\Phi, \underline{b})\right)$ so that:

! for strategies

- For $\sigma: A \multimap B \ldots$
- ! $\sigma!A \sim!B$ is a strategy of plays
$\left(S,\left(S^{*} \Phi, \underline{a}\right),(\Phi, \underline{b})\right)$ so that:
- [S*Ф, S, Ф]-threads are plays of σ.

!! for the comonad

!! for the comonad

- !!G for some game G is a heap graph whose nodes are heap graphs.

!! for the comonad

- !!G for some game G is a heap graph whose nodes are heap graphs.
- As before, we can understand this in a simpler way.

!! for the comonad

- !!G for some game G is a heap graph whose nodes are heap graphs.
- As before, we can understand this in a simpler way.
- Same for !!!G, ???G, !?!G, etc., using O-heaps, P-heaps and decomposed parity heaps.

$\Psi \geqslant \Phi$

!! for the comonad

- !!G for some game G is a heap graph whose nodes are heap graphs.
- As before, we can understand this in a simpler way.
- Same for !!!G, ???G, !?!G, etc., using O-heaps, P-heaps and decomposed parity heaps.
- Comonad axioms are straightforward.

$\Psi \geqslant \Phi$

!! for the comonad

- !!G for some game G is a heap graph whose nodes are heap graphs.
- As before, we can understand this in a simpler way.
- Same for !!!G, ???G, !?!G, etc., using O-heaps, P-heaps and decomposed parity heaps.
- Comonad axioms are straightforward.
- For example...

$\Psi \geqslant \Phi$
(c)
$\delta_{A} \| \varepsilon_{!A}:!A \multimap!A$

Summary

Summary

- Characterisation of diagrams used to intuitively communicate ideas.

Summary

- Characterisation of diagrams used to intuitively communicate ideas.
- Schedules.

Summary

- Characterisation of diagrams used to intuitively communicate ideas.
- Schedules.
- General interleaving.

Summary

- Characterisation of diagrams used to intuitively communicate ideas.
- Schedules.
- General interleaving.
- Pointers.

Summary

- Characterisation of diagrams used to intuitively communicate ideas.
- Schedules.
- General interleaving.
- Pointers.
- Robust graphical framework extended from the literature.

Summary

- Characterisation of diagrams used to intuitively communicate ideas.
- Use graphical methods to give "easy" proofs of key properties.
- Schedules.
- General interleaving.
- Pointers.
- Robust graphical framework extended from the literature.

Summary

- Characterisation of diagrams used to intuitively communicate ideas.
- Schedules.
- General interleaving.
- Pointers.
- Robust graphical framework extended from the literature.
- Use graphical methods to give "easy" proofs of key properties.
- Associativity of composition of strategies.

Summary

- Characterisation of diagrams used to intuitively communicate ideas.
- Schedules.
- General interleaving.
- Pointers.
- Robust graphical framework extended from the literature.
- Use graphical methods to give "easy" proofs of key properties.
- Associativity of composition of strategies.
- Symmetric monoidal closure of category of games.

Summary

- Characterisation of diagrams used to intuitively communicate ideas.
- Schedules.
- General interleaving.
- Pointers.
- Robust graphical framework extended from the literature.
- Use graphical methods to give "easy" proofs of key properties.
- Associativity of composition of strategies.
- Symmetric monoidal closure of category of games.
- Arguments use fundamental properties of the plane ("left", "right") to encode properties without reindexing.

