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5. Graphical representations of games with more than two components

So far, the ⊸-schedules and ⊗-schedules used to describe the interleaving of plays in games only
describe the interleaving across two components, such as in a game A⊸ B or A⊗B. If a game
has a more complex structure, the plays are more complicated.

For example, consider the game A ⊸ (B⊗C). A position of A ⊸ (B⊗C) is a triple (S,a, x),
where S is a ⊸-schedule, a is a position of Â and x is a position of B⊗C. x is therefore itself a
triple (T, b, c), with T a ⊗-schedule, b a position of B̂ and c a position of Ĉ. One could express a
position of A⊸ (B⊗C) as a ⊸-schedule whose nodes on the left are labelled (. . . ,πA(a), a) and
whose nodes on the right are labelled with (. . . ,πB⊗C(T, b, c), (T, b, c)).
An example of such a position is shown in Figure 20(a). The enlarged nodes on the right are
labelled with ⊗-schedules which show the play in B⊗C.

However, this representation does not reflect the intuitive arguments used by researchers who
frequently argue about multi-component games in similar ways to two-component games [10, 7,
4]. Rather than nested interleavings being recorded within nodes’ labels, graphs can directly
show play passing between several component games. In our example, this may be depicted by
like Figure 20(b). These “unfolded” expressions are widely used and provide intuitive, informal
arguments for structure on categories of games.

In this section we classify the collection of such graphs, explain how to use them to represent
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This work is concerned with some of the mathematical devices that give 
structures to games.

In particular:

Schedules for interleaving in ⊸ and ⊗

Heaps for backtracking in !

(Just schedules for today)



Schedules as an explicit interleaving structure were introduced by 
Harmer, Hyland and Melliès in 2007.

Their definitions are very combinatorial.

In practice, when describing a position of a game, or interactions 
between strategies, people tend to draw pictures.

Schedules

Harmer, Hyland and Melliès. Categorical combinatorics for innocent strategies. LICS 2007.
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These pictures allow intuitive descriptions and intuitive arguments to be made.

We’d like to let games be given by these diagrams.

We want to:

Characterise the diagrams.

Describe graphical arguments and methods.

Then intuitive arguments become proofs in terms of the definitions.

Aim of this work



Outline
What I’ll do here:

Describe a general framework for 
plane graphs

Characterise schedules diagrams for 
⊸ and ⊗

Show how schedules can describe 
plays in games

Characterise interleaving graphs

Show how interleaving graphs can 
describe games

Describe how interleaving graphs 
relate to schedules

Show how this permits arguments for 
categorical properties

Mention other/future directions
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What pictures to characterise?
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Progressive graphs
There are several definitions of plane graph we 
could use.

We chose Joyal and Street’s progressive plane 
graphs.

A progressive graph Γ = (G,G0) consists of a 
Hausdorff space G, a finite subset G0 ⊆ G of 
nodes such that G∖G0 is a finite collection of 
edges, each homeomorphic to (0,1).

Edges have directions.

No cycles.

Joyal and Street. The geometry of tensor calculus I. Advances in Mathematics 1991.
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Progressive plane graphs
A progressive plane graph is a progressive 
graph* Γ, together with an embedding ɩ : Γ ↪ ℝ2 
such that:

Edges point down: sources are higher 
than targets.

The second projection ℝ2 → ℝ is injective 
on each edge: no doubling-back.

Observe that images are compact subsets of 
the plane.

*We are assuming here that each edge of Γ = (G,G0) has two endpoints in G0.



Deformation
Progressive graphs Γ = (G,G0) and Δ = (D,D0) are isomorphic if G ≅ D induces 
a bijection on the nodes.  Write it Γ ≅ Δ.

A ppg Γ,ɩ is a deformation of Δ,κ if Γ ≅ Δ and there’s a continuous function
h : G × [0,1] → ℝ2 such that:

h(G,0) = ɩG

h(G,1) = κD

h(–,t) is an embedding of Γ as a ppg for each t ∈ [0,1]



Deformations allow us not to worry exactly what our pictures look like.  
We speak instead of deformation classes.

Our characterisations of schedule, interleaving graph, etc. will each be a 
specific refinement of ppg.  Each refinement comes with an equivalently 
refined deformation.

...

h(–,t) is an embedding as a [insert refinement here] graph for each
t ∈ [0,1]



In this talk, our refinements are 
examples of directed paths.

G ≅ [0,1].

Each node has at most one
in-edge, one out-edge.

Paths
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Schedules
A ⊸-schedule S : m → n is a directed 
path ppg with m+n nodes, positioned 
on left and right boundaries of some 
[u1,u2] × ℝ, such that:

First node on right

Subsequent nodes in pairs

We can colour nodes by O/P status 
(parity) to make certain things easier.
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Figure 6: Colouring of nodes.

In fact, it is the case that any progressive path with nodes on either side of a vertical strip of
R2 which is coloured in this way is a schedule. The colouring scheme encodes the “dynamics” of
a schedule, as an alternative to (1) and (2), locally and in terms of colours on the nodes rather
than by the explicit odd–evenness of distance from the first node. By colouring, we attach to
each node its parity in its schedule.

Figure 6(a) shows our original schedule from Figure 1(a) decorated in this way. Observe that (2)
is satisfied if and only if this colour scheme is followed.

Note that edges are always directed ○ → ● if they move from one side to the other (this is the
switching condition for ⊸ [18]). Thus, if some pi is black and pi+1 is white, then {pi, pi+1} ⊂ U
or ⊂ V . When composing schedules, the colours in the two copies of the internal nodes will be
precisely reversed in each schedule. We can show this using !" and #" for the internal nodes of
the composition diagram, such as the one in Figure 6(f). Were we to have two cross-schedule
edges from the same internal node, it is not the case that both of them could be ○→ ●, since the
internal node is different colours in both component schedules; hence such a scenario is impossible.
Similarly for two cross-schedule edges to the same internal node. Figures 6(d) and 6(e) show the
hypothetical fragments with a choice of colours, and the illegal edges marked with a ×. An
analogous arguments using state diagrams exist elsewhere in the game semantics literature; for
example, [18, 8].

Definition 16. Let S ∶ Um → Vn be a ⊸-schedule. The truncation to j < k of S is the ⊸-
schedule S ↾j obtained by removing all parts of S strictly below the horizontal line through the
j-th node along the path order of S.

10



Composition
Composition of ⊸-schedules is a graphical 
procedure.

To compose S : m → n with T : n → r; form 
a 2-fold composition diagram:

Overlap middle nodes

Remove central “⌇” edges and 
“declassify” nodes

Resultant ⊸-schedule is called S‖T : m → r.
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This process uses properties of 
graphs in the plane

We know that we approach the first 
internal node from the right and must 
leave to the left

We know, therefore, that the “⌇” 
edges exist

It’s the “⌇” whose first edge leaves the 
first internal node to the right...
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We can then argue graphically to get our 
first result.

Composition of ⊸-schedules is 
associative.

Form 3-fold composition diagram.

One order of composition removes 
right-hand “⌇” first...

...the other order removes left-hand 
“⌇” first

Figure 9: A three-way composition diagram with composite path highlighted. Note that, since
we must always cross between schedules on reaching an internal node, there are no choices to be
made.

u1 = p1

u2 = p4
u3 = p5

u4 = p8
p7 = u′4
p6 = u′3

p3 = u′2
p2 = u′1

⋮

Figure 10: A prefix fragment of an identity schedule.
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These are the “most alternating” ⊸-
schedules satisfying the conditions.

They’re identities of composition.

Copycat ⊸-schedules



Category of ⊸-schedules

Objects are nonnegative integers.

A morphism m → n is a schedule S : m → n.

Composition and identities as described.

It’s isomorphic to the category of schedules in Harmer et al.’s paper.



Now in games

A game A is a graded set with predecessor function; a forest.

A(1) ←π A(2) ←π ⋯

If i is odd, elements of A(i) are O-positions, otherwise they are
P-positions.

A∖π(A) are leaf positions.



For a game A, a strategy σ on A, written σ:A, is a graded subset
σ(2k) ⊆ A(2k) such that:

Closed under double-predecessor:  π2(σ(2k+2)) ⊆ σ(2k)

Deterministic:  x,y ∈ σ(2k) and πx = πy then x = y



q q

t tf
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⊸-schedules in games
Suppose we have games A and B with am in 
A(m) and bn in B(n), and a ⊸-schedule
S : m → n.  Then we have a way to label all 
nodes of S.

Label bottom-left node am

Label bottom-right node bn

Label each node above using πA and πB

We denote such a labelled ⊸-schedule (S,am,bn).

Labelled ⊸-schedules can be composed.
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⊸-games
Given games A and B, the game A ⊸ B is given by the diagram

(A ⊸ B)(1) ← (A ⊸ B)(2) ← ⋯

(A ⊸ B)(k) is the set of labelled ⊸-schedules

(  S:m→n  ,  am∈Â(m)  ,  bn∈B(n)  )

such that m + n = k.

πA⊸B is given by truncation.



q
q

t
t f

t

q
q

f
t f

f

q
qq

q

f

qq

t

Figure 13: All complete plays for B⊸ B.
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Figure 14: The ⊸-schedules giving all complete plays of the strategy “¬”.

Remark 38. As described above, the entire tree of an arrow game is determined by the labelled
⊸-schedules for its leaf positions, with other positions and π given by prefixing. This also gives
us the natural tree structure of the game.

We can therefore give a strategy σ on an arrow game by specifying a set of “maximal” even-
length labelled ⊸-schedules whose even-length truncations give the remaining positions in σ. As
in Remark 29, this set of maximal ⊸-schedules will subject to the condition that the longest
common truncation is of any two members is of even length.

Example 39. Consider the strategy given by the ⊸-schedules in Figure 14. The tree given by
these strategies under truncation is the subtree of the full tree for the game B⊸ B which denotes
the function x ↦ ¬x.

Example 40. There two strategies that could be considered to model the function which is
constantly f. One ignores its argument and is shown in Figure 15(a). The other considers its
arguments and is shown in Figure 15(b).

4. The category of games

4.1. Composition of strategies

Strategies on arrow games are the morphisms of the category of games. Here, we adapt the
description of strategy composition from Definition 7 of [6].
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Definition 35. Given games A and B, we construct the arrow game A ⊸ B given by the
diagram (A⊸ B)(1) πA⊸B←### (A⊸ B)(2) πA⊸B←###⋯

where (A⊸ B)(k) is the set of all triples (S,a, b) with a ∈ Â(m), b ∈ B(n) and S ∶ Um → Vn is a
⊸-schedule with m + n = k and path order (p1, . . . , pk). The predecessor function πA⊸B is given
by

πA⊸B ∶ (S,a, b) ↦ ⎧⎪⎪⎨⎪⎪⎩
(S ↾k−1,πA(a), b) if pk ∈ Um(S ↾k−1, a,πB(b)) if pk ∈ Vn

Remark 36. We will often use the notation (S,a, b) to refer to a schedule S ∶m → n play labelled
with a ∈ A(m) and b ∈ B(n). We will also use the notation (S ⋅ T, a, b, c) to refer to the labelled
composition diagram for the composition (S,a, b)∥(T, b, c).
In A⊸ B, the positions are given by a ⊸-schedule and the most recent moves in the component
games A and B. The triple (S,a, b) lets us draw a ⊸-schedule with a play labelling of Um

with a and Vn with b (both in order). Then, the predecessor function πA⊸B maps (S,a, b) to(S ↾k−1, a′, b′), where b′ is the final label on the right hand of the truncated labelled ⊸-schedule
and a′ is the final label on the left if one exists, and else is ∗. The role of the −̂ operator is to
account for the case where a move has not yet been played in one of the components. Observe
that a′ and b′ are guaranteed to be in the correct grades of A and B respectively.

Example 37. We may give the game B⊸ B by giving its graded sets. Rather than writing the
positions as the triples (S,a, b), we rather give the labelled ⊸-schedules.

(B⊸ B)(1) ={ q }
(B⊸ B)(2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
with πB⊸B given by truncation.

Notice that, as with any game, we may completely specify the game B⊸ B in terms of its leap
positions. The labelled ⊸-schedules of Figure 13, together with all possible truncations of those
⊸-schedules, provide a complete list of the positions of B⊸ B, with grading given by the length
of the ⊸-schedule and π given by truncation.
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account for the case where a move has not yet been played in one of the components. Observe
that a′ and b′ are guaranteed to be in the correct grades of A and B respectively.

Example 37. We may give the game B⊸ B by giving its graded sets. Rather than writing the
positions as the triples (S,a, b), we rather give the labelled ⊸-schedules.

(B⊸ B)(1) ={ q }
(B⊸ B)(2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q

t
,

q

f

,
q

q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(B⊸ B)(3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q
q

t

,

q
q

f

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(B⊸ B)(4) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
q

t
t

,

q
q

t
f

,

q
q

f
t

,

q
q

f
f

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
with πB⊸B given by truncation.

Notice that, as with any game, we may completely specify the game B⊸ B in terms of its leap
positions. The labelled ⊸-schedules of Figure 13, together with all possible truncations of those
⊸-schedules, provide a complete list of the positions of B⊸ B, with grading given by the length
of the ⊸-schedule and π given by truncation.
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Strategies

q
q

t
t f

t

q
q

f
t f

f

q
qq

q

f

qq

t

Figure 13: All complete plays for B⊸ B.

f
t

q
q

t
f

q
q

Figure 14: The ⊸-schedules giving all complete plays of the strategy “¬”.

Remark 38. As described above, the entire tree of an arrow game is determined by the labelled
⊸-schedules for its leaf positions, with other positions and π given by prefixing. This also gives
us the natural tree structure of the game.

We can therefore give a strategy σ on an arrow game by specifying a set of “maximal” even-
length labelled ⊸-schedules whose even-length truncations give the remaining positions in σ. As
in Remark 29, this set of maximal ⊸-schedules will subject to the condition that the longest
common truncation is of any two members is of even length.

Example 39. Consider the strategy given by the ⊸-schedules in Figure 14. The tree given by
these strategies under truncation is the subtree of the full tree for the game B⊸ B which denotes
the function x ↦ ¬x.

Example 40. There two strategies that could be considered to model the function which is
constantly f. One ignores its argument and is shown in Figure 15(a). The other considers its
arguments and is shown in Figure 15(b).

4. The category of games

4.1. Composition of strategies

Strategies on arrow games are the morphisms of the category of games. Here, we adapt the
description of strategy composition from Definition 7 of [6].
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A game A ⊸ B can be given by a set 
of complete plays; labelled
⊸-schedules.

A strategy σ : A ⊸ B can be given by a 
set of labelled ⊸-schedules:

Maximal even-length

Even-length longest common 
truncation



Composition of strategies

Strategies are composed by composing all composable pairs of labelled 
⊸-schedules.

σ‖τ = { (S‖T,a,c) | (S,a,b)∈σ, (T,b,c)∈τ }

It’s associative because composition of ⊸-schedules is.



Category of games

Objects are games.

Morphism A → B is a strategy on A ⊸ B.

Identity morphism A → A is the strategy of labelled copycat schedules 
(S,a,a).

It’s isomorphic to Harmer et al.’s category of games.



⊗-schedules and ⊗-games

⊗-schedules are like ⊸-schedules, 
but don’t have to start on the right.

For games A,B, the game A ⊗ B is 
given by sets of labelled
⊗-schedules under truncation.

q

q

t

t

f

t

q

q

t

f
q

f

q

f

q

q

q

t

qq

t

f

q

t

tf f
q

qq

f

q

Figure 38: All complete plays for B⊗B.

q

q

t

t

t

t

q

q

Figure 39: The schedules giving all complete plays of the strategy t⊗t ∶ B⊗B.

A⊗B where plays are given by labelled ⊗-schedules which are even-length truncations
of those labelled ⊗-schedules giving complete plays, subject to the condition that the
longest common truncation of any two is of even length.

Example 93. The strategy t⊗t ∶ B⊗B is given by the labelled schedules in Figure 39.

3.4 Graphical representations of games with more than two
components

So far, the �-schedules and ⊗-schedules used to describe the interleaving of plays in
games only describe the interleaving across two components, such as in a game A� B
or A⊗B. If a game has a more complex structure, the plays are more complicated.

For example, consider the game A� (B⊗C). A position of A� (B⊗C) is a triple(S, a, x), where S is a �-schedule, a is a position of Â and x is a position of B⊗C.
x is therefore itself a triple (T, b, c), with T a ⊗-schedule, b a position of B̂ and c a
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Interleaving graphs

c1

c2

b1

b2

c2

c1

b1

c2

c1

c1

a1

a2

a3

a4

A C⊗B )(�

(a) An example of a play of some
game A� (B⊗C).

)C⊗�A (B

a1

a2

a4

a3

b1

c2

b2

c1

(b) The same play unfolded into
a labelled 3-interleaving graph

Figure 40
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c1

c2

b1

b2

c2

c1

b1

c2

c1

c1

a1

a2

a3

a4

A C⊗B )(�

(a) An example of a play of some
game A� (B⊗C).

)C⊗�A (B

a1

a2

a4

a3

b1

c2

b2

c1

(b) The same play unfolded into
a labelled 3-interleaving graph

Figure 40

71



By our definitions, games with more than 
two components have positions given by 
schedules, whose nodes are labelled by 
schedules, whose nodes are labelled by...

We want to be able to use an n-interleaving 
graph representation for any appropriate n.

How can we characterise which of 
these actually describe the interleaving 
in a game?

How do they relate to the “nested 
schedule” representation?

u2 u3 u4u1

Figure 41: An example of a 4-interleaving graph.

• All �-schedules and ⊗-schedules are examples of 2-interleaving graphs.

We will frequently describe interleaving graphs “up to deformation” in a way similar
to Definition 48. However, there are two distinct notions of deformation we will use,
one more general than the other. In some cases we wish to refer to a deformation of
interleaving graphs as interleaving graphs, so that the vertical order of the nodes remains
unchanged and so that any nodes on the same vertical line remain on a vertical line. For
this we will use the notion of deformation from Definition 97. In the more general case,
when we are manipulating the structure of interleaving graphs in Section 3.4.3, we will
wish to deform the graphs in such a way that nodes formerly on the same vertical line
can move horizontally relative to eachother. For this we will need a more generalised
notion of deformation, as in Definition 96.

Definition 96 ([JS91], Definition 1.2.). Let � = (G,G
0

) and �′ = (G′,G′
0

) be progressive
graphs, together with progressive plane embeddings ◆ ∶ �̂ � R2 and ◆′ ∶ �̂′ � R2

respectively. We say that � with ◆ is deformable into �′ with ◆′ (as a progressive
plane graph) if there is a continuous function h ∶ �̂ × [0,1]→ R2 such that

• For each t ∈ [0,1], h(−, t) is a progressive plane embedding �� R2.

• h(�,0) = ◆(�) is a progressive plane embedding of �.

• h(�,1) = ◆′(�′) is a progressive plane embedding of � (and of �′).
In particular, we consider restricted notions of deformations, such as in Definition 48
and in the following:
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Which interleaving graphs describe 
suitable interleavings?

The columns of nodes in an 
interleaving graph correspond to 
letter symbols in the word describing 
the game.

For a word w containing a symbol X, 
we’ll speak of X-nodes of the graph.

Suitability

q

q

q

1
q

1
n

n

q

q

1

q

n

q

n

1

N N N N) ) )( )

Oq

q

q

1
q

1
n

n P

O

P

O

P

O

P

� f . f 0 1
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An n-interleaving graph Z is suitable for a word w with |w| = n, if:

For a connective □ of w, restricting Z to the bracketed subword
w□ ⊑ w and segregating over □ gives a □-schedule.

For a bracketed subword u ⊑ w, the corresponding restriction of Z is 
suitable for u.



Suppose a game A is built from games A1, ..., An using ⊸ and ⊗ as in a 
word w.

The unfolded game Ã is is given by labelled interleaving graphs suitable 
for w, under truncation.

Unfolded game



How does A relate to Ã?

We’ll transform a position of A into a position of Ã by repeatedly 
“unfolding” a schedule labelling one of A’s nodes.

This will turn out to be an isomorphism of games.

“Folded” games have nice associative composition

“Unfolded” games resemble intuitions, literature



A □-schedule is a 2-interleaving 
diagram suitable for the word
A □ B.

Let w be a word containing letter X 
with |w| = n.

Let Z be an n-interleaving graph 
suitable for w whose X-nodes are 
labelled with a schedule.

Unfolding

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4



X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

(X1 ( X2)( ⌦( )
CA

X1 ( X2



X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

(X1 ( X2)( ⌦( )
CA

X1 ( X2

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4



X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

(X1 ( X2)( ⌦( )
CA

X1 ( X2

X CA

( )⌦(

c1

c2

a1

a2

c3

c4

x1

x2

x3

x4

x5

x6

x2

x4

x5

x3

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

x1

a2

c2

x6

c3

x1

x5

c1

c4

a1

x2

x3

x4

(X1 ( X2)( ⌦( )
CA

X1 ( X2



One step of this is an isomorphism of games.

Unfolding respects truncation

We can do this repeatedly to produce an interleaving graphs so long as we 
have labels which are schedules.

The process is confluent.

There are no critical pairs

(There’s also a folding process.)



Two games are isomorphic if their unfolded forms are isomorphic.

A game is isomorphic to its unfolded form

Now we can think of any multi-component game as having positions 
which are labelled interleaving graphs.

Also works with strategies.

To compose, fold first, compose as a ⊸-schedule, then unfold

An isomorphism of games



This isomorphism is useful because our intuitive arguments become proofs.

E.g. The game (A ⊗ B) ⊸ C looks the same as the game A ⊸ (B ⊸ C) when 
unfolded.*

“The first move is in C, subsequent moves come in pairs in A, B or C.”

So the category of games is monoidal closed.

A symmetry for ⊗ can be given by a labelled 4-interleaving graph suitable 
for (A ⊗ B) ⊸ (B ⊗ A).

*Haven’t actually shown here that ⊗ is a tensor product, but it is!



A category of games whose plays 
are labelled diagrams.

Familiar, “deceptively” intuitive 
arguments give proofs in terms of 
the actual definitions.

Our framework is well-grounded in 
the literature and very extensible.

In particular, we’ve seen:

Schedules for ⊸ and ⊗

Interleaving graphs

An isomorphism of graphical 
representations

Our arguments use fundamental 
properties of graphs and of the 
plane.

Recap



Pointer graphs for backtracking.

Combining pointers and schedules.

Composing and decomposing 
threads.

! as a comonad on the category of 
games.

What else?
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(a) An O-heap.
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(b) The same O-heap. In this arrangement, the
ordering of the nodes is recorded by their verti-
cal position and so the labels are superfluous.

Figure 48: Two O-heap graphs for the same O-heap.
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(a) The schedule S ∶
6→ 6.

(b) The O-heap
graph � on{1, . . . ,6}.

(c) The P-heap graph
 on {1, . . . ,6}.

(d) S, � and  drawn together. (e) The O-heap [�, S, ].

(f) [�, S, ] in standard configu-
ration.

Figure 50: The construction [�, S, ].
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What next?

I still have things to look at immediately.

? as a monad on the category of games

Distributive laws for ? and !

Hopefully this approach will prove useful in general.


