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Brains and Machines

▸ We’ve seen from previous speakers how: 

▸ Machine systems are designed to perform the same tasks as humans. 

▸ The architecture of machine models of (e.g.) vision may relate to those of 
biological systems. 

▸ By using methods such as RSA, intermediate-level derived representations in 
one may be compared to those in the other.
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Speech and vision

▸ Unlike visual objects, speech stimuli are time-sensitive. 

▸ There’s no standard neurocomputational model of speech comprehension. 

▸ Humans alone amongst animals have this faculty. 

▸ The most effective artificial systems’ designs don’t tend to relate to biological 
models. 

▸ However, machines provide a computational model of the process.
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Speech recognition

▸ Both human brains and machines can recognise 
speech accurately. 

▸ Transforms raw acoustic input into abstract 
word “objects”. 

▸ Artificial (ASR) systems are nearly as good as 
humans. 

▸ In brains, this is mediated by some complex, 
poorly understood neurobiological process. 

▸ We will compare intermediate-level 
representations in an ASR and human auditory 
cortex using RSA. “what a lovely day”
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HTK: GMM-HMM
[sil-aa-b] p
[sil-aa-k] p
[sil-aa-d] p

[ih-s-jh] p
[ih-s-k] p

[uh-zh-uh] p
[uh-zh-uw] p
[uh-zh-sil] p
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[sil-w-oh] [w-oh-t] [oh-t-sil]
WHAT

Young et al. (1997) 
The HTK Book
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Searchlight GLM RSA

Searchlight 
patch

Data RDM

Dynamic phonetic model RDMs from HTK's state

β[ɑ] β[æ] β[z]+ + … + E+= [ɑ] [æ] [z]

β

Contributions of 
individual phonetic 

models
Su et al. (2014) 

Frontiers in Neuroscience
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Evidence for sensitivity to phonetic features
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The neural responses were organized into three discrete and independ-
ent clusters, representing the /ba/, /da/ and /ga/ syllables (Fig. 2c).  
No errors in cluster membership were found at the peak of discrimi-
nability (110- and 120 ms interval start). The neuronal stimulus  
responses clustered in exactly the same way as we observed in per-
ception (/ba/ 1–4, /da/ 5–9 and /ga/ 10–13), whereas earlier and later 
epochs yielded error-prone cluster estimates (see Supplementary Fig. 2  
for entire cluster error time series). Notably, the separate organization 
of response clusters matched the robust perception that /ba/, /da/ 
and /ga/ are perceived as independent and unique phonetic entities, 
rather than speech sounds occurring along a linear acoustic or even 
phonetic continuum.

To evaluate how well the neural pattern correlated to the psycho-
physical behavior, we plotted neurometric identification functions for 
each phonetic category using the normalized distance in MDS space 
between each stimulus position and the three cluster means. This 
revealed a similar appearance to the psychometric identification func-
tions, with steep boundaries occurring between phoneme categories 
(Pearson’s correlation, r > 0.9 for each function at 110-ms intervals 
start, P < 0.05; Fig. 3, and Supplementary Figs. 2 and 3 for entire 
cluster-error time series and combined MDS and K-means solutions, 
respectively, and Supplementary Fig. 4). A neurometric discrimina-
tion function was also derived from distances between individual 
stimulus positions in MDS space. This also achieved good correla-
tion with the psychometric functions for discrimination (Pearson’s 
correlation, r = 0.66 at 110-ms intervals start, P < 0.05). Notably, we 
observed good correspondence between the two neurometric func-
tions; the peaks of the discrimination occurred for the same stimuli 
as the steepest parts of the identification, thus fulfilling the criterion 
for neural categorical organization. This organized representation was 
transient, spanning the neuronal response from 110–160 ms.

To determine the spatial organization of phonetic representa-
tion, we next identified the cortical sites contributing to stimulus 
discriminability by extracting the most informative electrodes as 
determined by the classifier. Although the evoked potentials showed 

overlapping representation for speech sounds, discrete differences 
in cortical activations (<4mm) were observed to underlie phonemic 
discrimination. We plotted these spatially contrastive differences 
between various categories (Fig. 4). The small overlap between 
these loci suggests that phonetic encoding is not simply a scaling 
of the response amplitudes in the same neuronal population.

DISCUSSION
A key element of speech perception is the categorization of acousti-
cally variable inputs into a discrete phonetic code. Understanding 
the neural basis of this process is a central question in the study 
of the human capacity for language20. We found that the pSTG is 
robustly organized according to its sensitivity to phonetic objects 
rather than to the linear changes of spectrotemporal acoustic cues. 
For the stop consonant-vowel sounds that we used, we observed a 
complex distributed pattern of evoked neural activity recorded by a 
cortical microarray. The discriminability of these response patterns, 
however, relies on transient temporal and local, non-overlapping  
spatial neural representations.

Without a priori knowledge on functional organization of the 
pSTG, the multivariate pattern classifier and MDS are useful meth-
ods for examining the critical acoustic features underlying stimulus 
discriminability. The first MDS dimension correlated linearly with the 
F2 onset frequency, which, in natural speech, cues the feature of place 
of articulation across /b/ to /d/ to /g/ (that is, location of constriction 
in the vocal tract from lips to teeth to soft palate). The second MDS 
dimension correlated with the size of F2 transition (absolute value 
of the difference between the onset F2 frequency and the vowel F2 
frequency), which, in these stimuli, cues the linguistic feature (coro-
nal; that is, not produced by tongue tip position), grouping /b/ and 
/g/ together. Critically, the grouping patterns observed did not arise 
from one dimension alone, but instead from the specific combina-
tion of two different linguistically relevant feature dimensions: the 
F2 onset frequency and the F2 formant transition. Thus, these results 
support the notion that phonetic encoding in the pSTG appears to be 
facilitated by feature detectors that integrate specific spectrotemporal 
cues relevant to speech.

The pSTG appears to have a specialized role in phonetic processing 
because of its specific responsiveness to speech over other sounds21–25 
and its direct anatomic connections to cortical areas supporting lexi-
cal and semantic extraction26–28. A recent fMRI study found activa-
tion of the left pSTG increased overall after engaging in categorical 
perception tasks on phonetic and nonphonetic sine-wave syllable 
tokens29. Our results extend these findings by providing new infor-
mation about the timing and topography mechanisms intrinsic to 
stimulus encoding in the pSTG.

Although our microarray recordings focused on auditory process-
ing in the pSTG, fMRI has implicated other areas during active pho-
netic discrimination. Selective amplification of left supramarginal 
gyrus activity has been observed in response to the contrastive fea-
tures of stimulus pairs spanning a /ba/-/da/ category boundary30. 
Invariant neural activation of the left inferior frontal gyrus was found 
for sounds morphed along a different acoustic continuum for voice 
onset time31. These findings suggest that there are several other corti-
cal areas that are likely involved in the behavioral processes of pho-
netic detection, working memory and/or decision making.

Our results indicate that the pSTG implements rapid categorical 
phonetic analysis, integrating spectro-temporal features to create 
invariant higher order linguistic structure32. This pattern is con-
sistent with the pragmatic demands of spoken English; there is a 
meaning distinction between /b/ and /d/ (for example, ‘bad’ versus 
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Figure 4 Topography of discriminative cortical sites in the pSTG 
underlying categorical speech perception. (a) The degree of separability 
of the various evoked activations at each electrode position is shown 
as classifier weights. The spatial patterns indicate that discriminative 
neuronal activation was not distributed over the pSTG, but was instead 
concentrated in few cortical sites. (b) The informative loci overlapped 
very little between comparisons of the features (on average 3.9  
0.88%; indicated by mixed colors such as magenta, cyan or orange in a), 
suggesting that the neuronal categorization is not accomplished by simply 
scaling the responses in the same network, but is instead a function of 
spatially discrete and local selectivity.

Chang et al. (2010) 
Nature Neuroscience

ity. For example, electrode e1 (Fig. 1D) showed
large evoked responses to plosive phonemes /p/,
/t /, /k/, /b/, /d/, and /g/. Electrode e2 showed
selective responses to sibilant fricatives: /s/, /ʃ/,
and /z/. The next two electrodes showed selec-
tive responses to subsets of vowels: low-back
(electrode e3, e.g., /a/ and /aʊ/), high-front vowels
and glides (electrode e4, e.g., /i/ and /j/). Last,
neural activity recorded at electrode e5 was se-
lective for nasals (/n/, /m/, and /ŋ/).

To quantify selectivity at single electrodes, we
derived a metric indicating the number of pho-
nemes with cortical responses statistically dis-
tinguishable from the response to a particular
phoneme. The phoneme selectivity index (PSI)

is a dimension of 33 English phonemes; PSI = 0
is nonselective and PSI = 32 is extremely selec-
tive (Wilcox rank-sum test, P < 0.01, Fig. 1D;
methods shown in fig. S3). We determined an
optimal analysis time window of 50 ms, centered
150 ms after the phoneme onset by using a pho-
neme separability analysis (f-statistic, fig. S4A).
The average PSI over all phonemes summarizes
an electrode’s overall selectivity. The average PSI
was highly correlated to a site’s response mag-
nitude to speech over silence (r = 0.77,P < 0.001,
t test; fig. S5A) and the degree to which the
response could be predicted with a linear spec-
trotemporal receptive field [STRF, r = 0.88, P <
0.001, t test; fig. S5B (14)]. Therefore, the ma-

jority of speech-responsive sites in STG are se-
lective to specific phoneme groups.

To investigate the organization of selectivity
across the neural population, we constructed an
array containing PSI vectors for electrodes across
all participants (Fig. 2A). In this array, each column
corresponds to a single electrode, and each row
corresponds to a single phoneme. Most STG elec-
trodes are selective not to individual but to specif-
ic groups of phonemes. To determine selectivity
patterns across electrodes and phonemes, we
used unsupervised hierarchical clustering analy-
ses. Clustering across rows revealed groupings of
phonemes on the basis of similarity of PSI values
in the population response (Fig. 2B). Clustering

Fig. 2. Hierarchical clustering of single-electrode and population
responses. (A) PSI vectors of selective electrodes across all participants. Rows
correspond to phonemes, and columns correspond to electrodes. (B) Cluster-
ing across population PSIs (rows). (C) Clustering across single electrodes (col-
umns). (D) Alternative PSI vectors using rows now corresponding to phonetic

features, not phonemes. (E) Weighted average STRFs of main electrode clus-
ters. (F) Average acoustic spectrograms for phonemes in each population clus-
ter. Correlation between average STRFs and average spectrograms: r = 0.67,
P <0.01, t test. (r=0.50, 0.78, 0.55, 0.86, 0.86, and 0.47 for plosives, fricatives,
vowels, and nasals, respectively; P < 0.01, t test).

www.sciencemag.org SCIENCE VOL 343 28 FEBRUARY 2014 1007

REPORTS

Mesgarani et al. (2014) 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the phoneme discrimination boundary corresponding to the 50% 
point of the labeling curve, are the defining psychophysical proper-
ties of categorical perception (Fig. 1b,c). Thus, one does not hear 
step-like changes corresponding to the changes in the acoustic signal, 
but instead perceives essentially quantal jumps from one perceptual 
category to another.

While subjects were fully awake in the operating room, we placed 
a customized high-density 64-electrode microarray (4 mm spacing) 
using stereotactic guidance on the surface of the posterior temporal 
cortex (defined here as cortical area caudal to the point where 
the central sulcus intersects the Sylvian fissure; Fig. 1d). Subjects 
 listened passively to a randomized sequence of stimulus tokens.  
The averaged evoked potential peaked at approximately 110 ms after the 
stimulus onset (Fig. 1e). The spatial topography of responses to /ba/, 
/da/ and /ga/ tokens revealed highly distributed responses across the  
pSTG (Fig. 1f).

As the functional organization of the pSTG exhibits a distributed 
representation for speech sounds, in contrast with the well-defined 
gradient of frequency selectivity in the primary auditory cortex16, 
we used an information-based strategy to determine how distri-
buted neural population activity patterns might encode speech. 
The specific measure that we used was the degree to which a multi-
variate pattern classifier (L1 norm regularized logistic regression17) 
was able to distinguish single-trial response patterns of the evoked 
cortical potentials.

In linguistics, confusion matrices are commonly used to explore 
the perceptual organization and distinctiveness of speech sounds18. 
We assembled the performance results from pattern classification into 
neural confusion matrices to organize the neural response dissimilar-
ity across each pair-wise stimulus comparison (Fig. 2). The confusion 
matrices were calculated for each subject and then averaged for the 
group using data binned in 40-ms time intervals and advanced by 10-ms  
steps. Classification performance varied between stimulus pairs, with 
peak discrimination at 78–79% for each subject.

Two things were apparent from the averaged matrices. First, when 
analyzed over successive time epochs, the overall neural pattern dis-
similarity gradually increased (Fig. 2a and Supplementary Results) 
and peaked transiently around 110 ms. Thus, the greatest overall neu-
ral pattern dissimilarity occurred at the peak response of physiologic 
evoked potentials, as opposed to early- or longer-latency responses. 
Second, although the overall discriminability among responses was 
highest during that interval, specific comparisons in the confusion 
matrices also showed poor discriminability, suggesting structured 
organization of response patterns. For example, neural responses to 
stimuli 1–4 were indiscriminable, whereas those responses to stimuli 
7 and 11 were highly discriminable (Fig. 2b).

To examine the similarity relationships across all stimuli, we applied 
unsupervised multidimensional scaling (MDS) to the confusion matrix 
to construct a geometric space in which the Euclidean distances between 
different stimuli markers correspond to the similarity of their neural 
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Figure 1 Psychophysics of categorical speech perception and speech-evoked responses during intraoperative human cortical recordings. (a) Wide-band 
spectrograms of the stimulus token continuum, synthesized with equal parametric changes in the F2 starting frequency (from 800–2,100 Hz). Top, 
full spectrogram of a single token with an 800-Hz starting frequency (stimulus 1, duration = 250 ms). Bottom, first 50 ms for each of the 14 stimulus 
tokens. (b) Psychometric identification function with percentage reporting /ba/, /da/ or /ga/. (c) Psychometric discrimination function (two step). The 
percentages of responses judged as different versus same are shown. The category boundaries located at peak discrimination are at stimuli 4 and 5 and 
at 9 and 10. (d) Three-dimensional surface reconstruction of representative brain magnetic resonance imaging with superimposed electrode positions 
over pSTG. (e) Grand average rooted mean square (RMS) evoked potentials recorded over pSTG for sound stimuli reliably categorized as /ba/ (tokens 
1–4), /da/ (tokens 6–9) and /ga/ (tokens 10–14). The average evoked potentials (RMS, solid line) and standard errors of evoked potential amplitudes 
(shaded) are shown. Potentials peaked at approximately 110 ms after stimulus onset. (f) Topographic plots of evoked potentials at 110 ms for each 
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Evidence for sensitivity to phonetic features
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Searchlight GLM RSA
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Speech recognition

▸ 16 subjects, 400 words, EMEG. 

▸ Most features we tested showed 
significant fit in auditory cortex. 

▸ Bilateral HG, STG, STS. 

▸ Broad category features fit best 
on the right. 

▸ Regions on the left tended to be 
more focussed. 

▸ Within-category features 
showed fits bilaterally.

Wingfield et al. (in prep.)[100, 170] ms



Moving forward: DNN-based ASR
(work in progress)

▸ DNNs have proved very effective in 
visual domain. 

▸ Hidden-layer representations 
provide “bottom-up” features which 
are used to disambiguate speech.
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HTK: DNN-HMM Zhang & Woodland (2015) 
Submission to InterSpeech
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Individual node responses

▸ BN architecture provides a low-
dimensional feature space sufficient 
to accurately determine 6000+ 
phonetic labels. 

▸ Dynamic inputs elicit dynamic BN 
responses. 

▸ Can we investigate this BN 
representation space, and compare 
it to brain representations?
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Nodes track phonetic features?
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Nodes track phonetic features?

Node 20Vowel frontness
time

w
or

ds
time

w
or

ds

- +0



Understanding speech recognition 25 November 2015

BN–feature similarity
Similarities between nodes and features

0

+1

-1

MDS



Understanding speech recognition 25 November 2015

Summary

▸ We found evidence of regions of articulatory feature representation in human 
auditory cortex. 

▸ We modelled speech-recognition-relevant features using machine systems which 
perform the task well. 

▸ RSA allows comparison of brain states and machine states at the level of 
representations. 

▸ EMEG records rich brain response data over time, non-invasively. 

▸ The processes of sound-to-meaning mapping are still poorly understood.
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